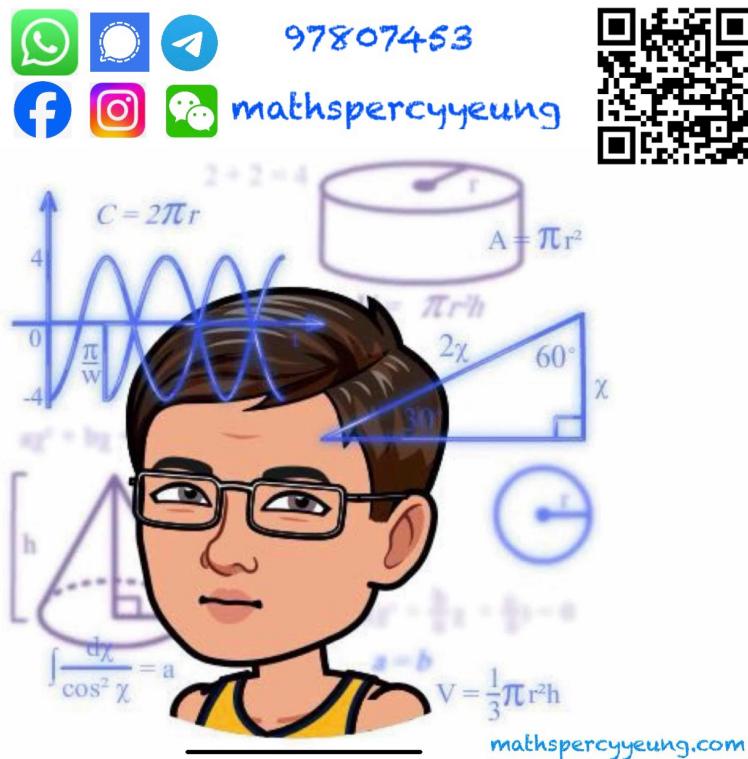


S3 First Term Examination (2023-2024)

Mathematics

(2 hours)

Date: 16th January 2024


Name: _____

Time: 8:30 a.m. – 10:30 a.m.

Class: _____ No.: _____

Instructions to students:

1. This paper consists of THREE parts, Conventional Questions, Multiple-choice Questions and Bonus Question. There are Section A1, Section A2 and Section B in Conventional Questions. Section A1 carries 31 marks, Section A2 carries 27 marks, Section B carries 22 marks, Multiple-choice Questions carry 20 marks and Bonus Question carries 3 marks.
2. The maximum score of this paper is 100.
3. Attempt ALL questions in Conventional Questions and Multiple-choice Questions. Write your answers in the spaces provided in this Question / Answer Book.
4. Unless otherwise specified, show your workings clearly.
5. Unless otherwise specified, numerical answers should either be exact or correct to 3 significant figures.
6. The diagrams in this paper are not necessarily drawn to scale.

Conventional Questions

Section A1 (31 marks)

1. Simplify $\frac{(p^2q^{-4})^3}{p^{-10}}$ and express the answer with positive indices. (3 marks)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

2. Make h the subject of the formula $k(4h - k) = 5(h + 7k)$. (3 marks)

3. Factorize

(a) $xz - 3yz$,
 (b) $x^2 + 11xy - 42y^2$,
 (c) $2x^2 + 22xy - 84y^2 - xz + 3yz$.

(5 marks)

4. (a) Solve the inequality $x + 5 \leq -\frac{5x+7}{3}$.

(b) Write down the greatest integer satisfying the inequality in (a).

(4 marks)

Handwriting practice lines consisting of three solid top and bottom lines and two dashed midlines for letter formation.

5. The depreciation rate of a bicycle is 12% per year. If its present value is \$17 260, find its value 2 years ago. (Give the answers correct to the nearest \$100.) (2 marks)

6. In Figure 1, O is the incentre of $\triangle PQR$. $\angle POQ = 120^\circ$ and $\angle OQR = 16^\circ$. Find $\angle PRQ$. (4 marks)

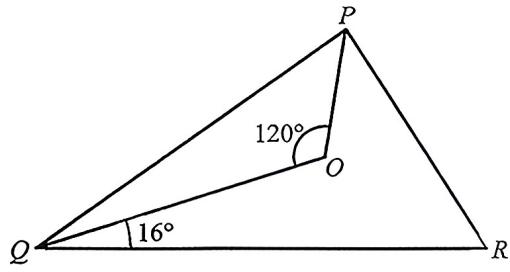


Figure 1

7. An alloy weighs 240 g, where 75% is gold and 25% is copper by weight. A new alloy is formed by decreasing the weight of gold by 30% and increasing the weight of copper by 50%.

(a) Find the weight of gold in the new alloy.

(b) Find the percentage change in the weight of the alloy.

(6 marks)

8. Simplify $\frac{2 \cdot 3^{n+1} + 8 \cdot 3^n}{5 \cdot 3^n - 8 \cdot 3^{n-1}}$, where n is a positive integer. (4 marks)

(4 marks)

Section A2 (27 marks)

Jaden has a total of 25 \$5 coins and \$2 coins. If the total value of these coins is at most \$90. Find the maximum number of \$5 coins. (4 marks)

10. Michael wants to borrow \$80 000. He will repay the original sum of money together with the interest after 10 years. Bank *A* charges a simple interest rate of 8% p.a., while Bank *B* charges an interest rate of 6% p.a. compounded monthly.

(a) Find the interest Michael needs to pay if he borrows the money

(i) from Bank *A*,
(ii) from Bank *B*.

(Give your answer correct to the nearest dollar.)

(b) Which bank should Michael borrow the money from? Explain your answer.

(Give your answer correct to the nearest dollar.)

(b) Which bank should Michael borrow the money from? Explain your answer.

(7 marks)

11. In Figure 2, $ABCD$ is a square and $ABEF$ is a rhombus. AD and EF intersect at point G . BF intersects AE and AD at I and H respectively. It is given that $\angle ABE = 52^\circ$.

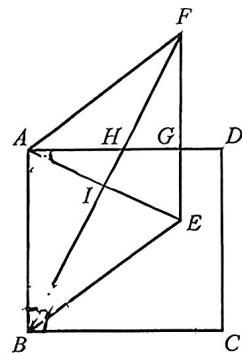


Figure 2

Find

(a) $\angle FAG$,
 (b) $\angle IHG$.

(6 marks)

Allowances		Progressive rates		
<u>Allowances</u>	<u>Amount (\$)</u>	<u>Net chargeable income</u>	<u>Rate</u>	<u>Tax (\$)</u>
• Basic	132 000	On the first \$50 000	2%	1000
• Married person	264 000	On the next \$50 000	6%	3000
• Child (For each of the 1st to 9th child)	120 000	On the next \$50 000	10%	5000
• Each dependent parent/grandparent aged 60 or above and living with the taxpayer	100 000	On the next \$50 000	14%	7000
		Remainder	17%	

- (a) Find her net chargeable income.
- (b) Chloe claims that her salaries tax payable according to the progressive rates exceeds 2% of her annual income. Is the claim correct? Explain your answer.

(4 marks)

1. In Figure 3, E and F are the mid-points of AD and BC respectively. It is given that $DF \parallel EB$. AC intersects DF and EB at H and G respectively.

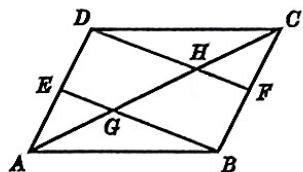


Figure 3

(a) If $CG = 12$, find AG .
 (b) If $BG = 2EG$, prove that $BG = DH$.

(6 marks)

Section B (22 marks)

14. (a) Solve the inequality $\frac{3x}{2} < 14 - \frac{x}{4}$ and represent the solutions graphically.
 (b) Hence, solve the inequality $\frac{5-2y}{2} < \frac{14}{3} + \frac{2y-5}{12}$ and represent the solutions graphically.

(7 marks)

15 It is given that p , q and k are non-zero integers.

(a) Simplify $\left(\frac{4}{25}\right)^p \times 2.5^q \times \left(\frac{8}{125}\right)^k$

(b) Suggest two sets of values of p , q and k such that $\left(\frac{4}{25}\right)^p \times 2.5^q \times \left(\frac{8}{125}\right)^k = 1$. Explain your answer.

(7 marks)

16. In Figure 4, $\triangle ABC$ and $\triangle ADE$ are equilateral triangles. BDC is a straight line. F is a point on AC such that $\angle BAD = \angle CBF$. BF and AD intersect at G .

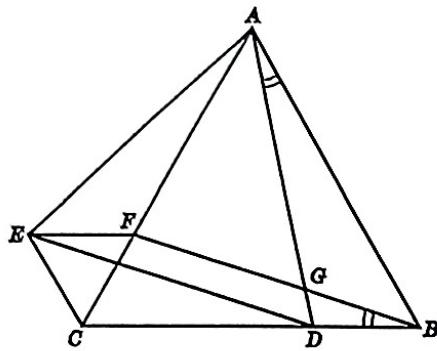


Figure 4

- (a) Prove that $BF \parallel DE$.
- (b) Prove that $BDEF$ is a parallelogram.

(8 marks)

Multiple-choice Questions (20 marks)

Each question carries 2 marks. Put a \checkmark for the correct answers in the boxes.

	17.	18.	19.	20.	21.	22.	23.	24.	25.	26.
A										
B										
C										
D										

17. If $x < y$, which of the following inequalities are true?

- I. $-2x - 5 > -2y - 5$
- II. $\frac{x}{2} + 5 > \frac{y}{2} + 5$
- III. $-2(5 + x) > -2(5 + y)$

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

18. Which of the following inequalities has a solution $x = 3$ but does not have a solution $x = -7$?

- A. $x - 7 < 0$
- B. $x + 3 < 0$
- C. $x - 3 > 0$
- D. $x + 7 > 0$

19. Which of the following is/are in scientific notation?

- I. -4×10^{-3}
- II. 0.03×10^{-2}
- III. 25×10^8

- A. I only
- B. III only
- C. I and II only
- D. II and III only

20. $27^{111} \cdot 4^{333} =$

- A. 12^{333} .
- B. 12^{444} .
- C. 108^{333} .
- D. 108^{444} .

21. $1110000011011_2 =$

- A. $2^{12} + 2^{11} + 2^{10} + 27.$
- B. $2^{13} + 2^{12} + 2^{11} + 27.$
- C. $2^{12} + 2^{11} + 2^{10} + 54.$
- D. $2^{13} + 2^{12} + 2^{11} + 54.$

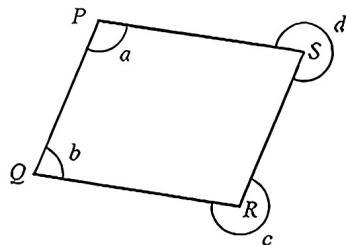

22. In Figure 5, $PQRS$ is a parallelogram. Which of the following is true?

Figure 5

- A. $a + b = c$
- B. $a + c = 360^\circ$
- C. $c + d = 2(a + b)$
- D. $a + b + c + d = 540^\circ$

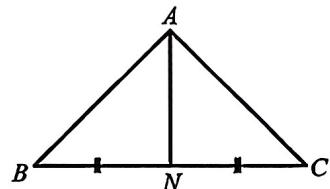

23. In Figure 6, BNC is a straight line.

Figure 6

 AN must be

- A. a median of $\triangle ABC$.
- B. an altitude of $\triangle ABC$.
- C. an angle bisector of $\triangle ABC$.
- D. a perpendicular bisector of $\triangle ABC$.

24. In Figure 7, $PQRS$ is a rectangle. N is a point on QR . It is given that $\triangle PQN \sim \triangle NRS$. Which of the following are true?

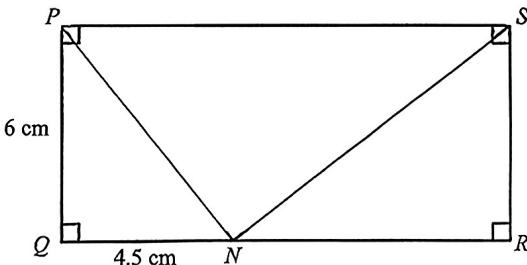


Figure 7

- I. $PN \perp NS$
- II. $\triangle PQN \sim \triangle SNP$
- III. $PS = 14 \text{ cm}$

A. I and II only
 B. I and III only
 C. II and III only
 D. I, II and III

25. Candice deposited \$50 000 in a bank at a simple interest rate of $r\%$ p.a. and received a simple interest of \$4500 after 18 months. Find the value of r .

A. 0.5
 B. 5
 C. 6
 D. 8

26. In Figure 8, $ABCD$ is a parallelogram. DC is produced to a point G such that $CD = CG$. E is a point on AD such that $AD : AE = 5 : 1$. EG intersects BC at F . Find $BF : AE$.

A. 3 : 1
 B. 3 : 2
 C. 4 : 1
 D. 5 : 2

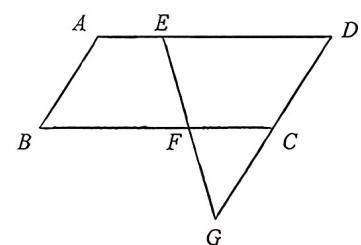


Figure 8

Bonus Question (3 marks)

27. How many zeros are there in the value of $25^{2020} \times 8^{2024} \times 5^{2022}$?

End of Paper