
\approx 29. Find the real part of $i^5 + 2i^{10} - 3i^{15} + 4i^{20}$.

34. If (3+2i)(x+yi)=3-11i, find the values of the real numbers x and y.

- **36.** (a) Simplify $\frac{9-2i}{4+i}$ and express the answer in the form a+bi.
 - **(b)** If $4x + i = \frac{9 2i}{4 + i}(3y + xi)$, find the values of the real numbers x and y.

Ch 2

9. L with inclination 45° passes through (2, -8).

- **34.** The straight lines L_1 : ax 3y + b = 0 and L_2 : 3x + 5y 16 = 0 are perpendicular to each other. L_1 cuts the x-axis and the y-axis at P(-6, 0) and Q respectively.
 - (a) Find the values of a and b.

Explain (b) Is L_2 the perpendicular bisector of PQ? Explain your answer.

- **35.** The straight line L_1 is perpendicular to the straight line L_2 : 2x 3y 8 = 0 and intersects L_2 at a point lying on the x-axis.
 - (a) Find the equation of L_1 .
 - **(b)** Find the area of the region bounded by L_1 , the x-axis and the y-axis.

- **44.** The equation of the straight line L is 4x y + 3 = 0. Two points M(2, 6) and N(0, 6) are given. The straight line ℓ passes through M and is parallel to L. P is a point lying on ℓ such that MP = NP.
 - (a) Find the equation of ℓ .
 - **(b)** Find the coordinates of P.
- Explain (c) Is $\triangle MPN$ a right-angled triangle with $\angle MPN = 90^{\circ}$? Explain your answer.

Ch 3

- **40.** It is given that the graph of $y = x^2 + 2px p + 2$ touches the x-axis at only one point.
 - (a) Find the two possible values of p.
 - **(b)** Find the x-intercept of the corresponding graph for each value of p.

53. α and β are the roots of the equation $x^2 - 4x - 2 = 0$. Find the values of the following expressions.

(a)
$$\alpha^2 + \beta^2$$

(b)
$$\alpha^{3} + \beta^{3}$$

(b)
$$\alpha^3 + \beta^3$$
 (c) $\alpha^2 + 4\beta - 2$

Ch 4

- **26.** It is given that $f(x) = -x^2 + kx + 7$ and f(1) f(5) = 4, where k is a constant.
 - (a) Find the value of k.
 - **(b)** Find the value(s) of a such that f(a) = 3. (Leave the radical sign ' $\sqrt{\ }$ ' in the answers.)

33. Let f(x) = x + 5 and $g(x) = x^2 - x$.

- (a) Find f(x 1) and g(x + 2).
- **(b)** Solve the equation g(x + 2) f(x 1) = 13.