
GHS Sorted Past Paper - MC S5-01 More about Equations

1. [20 - 21 S4 Final Exam - 09] (50%)

The figure shows a solid metallic cuboid. If the volume of the cuboid is 102 cm³, find the value of x.

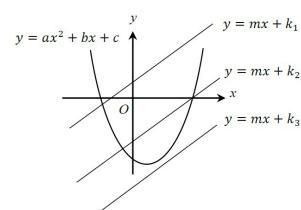
A.
$$x = 8.06$$

B.
$$x = 8.06 \text{ or } -2.23$$

C.
$$x=8$$

D.
$$x = 8$$
 or -2.5

2. [21 - 22 S4 Final Exam - 13] (37%)


13. The figure shows the graphs of $y = ax^2 + bx + c$, $y = mx + k_1$, $y = mx + k_2$ and $y = mx + k_3$. Which of the following are true?

I.
$$\begin{cases} y = ax^2 + bx + c \\ y = mx + k_1 \end{cases}$$
 has 1 real root only.

I.
$$\begin{cases} y = ax^2 + bx + c \\ y = mx + k_1 \end{cases}$$
 has 1 real root only.
II.
$$\begin{cases} y = ax^2 + bx + c \\ y = mx + k_2 \end{cases}$$
 has 2 distinct real roots.
III.
$$\begin{cases} y = ax^2 + bx + c \\ y = mx + k_3 \end{cases}$$
 has no real roots.

III.
$$\begin{cases} y = ax^2 + bx + c \\ y = mx + k_3 \end{cases}$$
 has no real roots.

- A. I and II only
- I and III only В.
- C. II and III only
- D. I, II and III

3. [21 - 22 S4 Final Exam - 14] (80%)

14. Solve
$$x^2 + xy = 2x - y + 20 = 28$$
.

A.
$$\left(-\frac{14}{3}, -\frac{52}{3}\right)$$
 or $(2, -4)$

B.
$$\left(\frac{10}{3}, -\frac{4}{3}\right)$$
 or $(10, 12)$

C.
$$\left(\frac{14}{3}, \frac{4}{3}\right)$$
 or $(-2, -12)$

D.
$$\left(\frac{14}{3}, \frac{4}{3}\right)$$
 or $(2, -4)$

4. [22 - 23 S4 Final Exam - 10] (81%)

10. If the simultaneous equations $\begin{cases} y = -x^2 + 10x - k \\ y = 2x + k \end{cases}$ have only one solution, then k = 1

5. [22 - 23 S4 Final Exam - 14] (45%)

14. If
$$\sqrt{16-5x} = 2-x$$
, then $x = 2-x$

6. [22 - 23 S4 Standardized Test - 06] (68%)

6. Solve
$$4x + 11\sqrt{x} - 3 = 0$$
.

A.
$$x = \frac{1}{16}$$

B.
$$x = \frac{1}{2}$$

C.
$$x = 9$$

D.
$$x = 9$$
 or $x = \frac{1}{16}$

7. [24 - 25 S4 Final Exam - 21] (42%)

21. If
$$\frac{14}{4\log x - 5} - 4 = \frac{2}{\log x + 1}$$
, then $\log \frac{1}{x} =$

A. 2 or
$$-\frac{11}{8}$$
.

B.
$$-2 \text{ or } \frac{11}{8}$$
.

C.
$$\frac{1}{2}$$
 or $-\frac{8}{11}$.

D.
$$-\frac{1}{2}$$
 or $\frac{8}{11}$.

8. [21 - 22 S5 Final Exam - 25] (71%)

25. Solve
$$2^x - \sqrt{2^x + 65} = 7$$
.

A.
$$x = 4$$

B.
$$x = 16$$

C.
$$x = 0 \text{ or } 4$$

D.
$$x = -1 \text{ or } 16$$

9. [21 - 22 S5 Mid-year Exam - 24] (52%)

24. If
$$4x^2 - y^2 + 2 = 4x + y = 5$$
, then $y =$

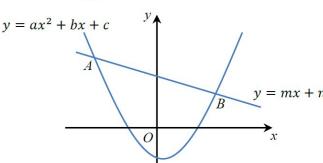
A.
$$-1 \text{ or } 3.$$

B.
$$-1 \text{ or } 5$$
.

C. 1 or
$$-\frac{13}{3}$$
.

D. 1 or
$$\frac{7}{3}$$
.

10. [21 - 22 S5 Mid-year Exam - 29] (41%)


29. The figure shows the graphs of $y = ax^2 + bx + c$ and y = mx + n. The two graphs intersect at two distinct points A and B. Which of the following must be true?

I.
$$b^2 > 4ac$$

II. The equation
$$ax^2 + (b-m)x + (c-n) = 0$$
 has no real roots.

III. The x-coordinate of the mid-point of AB is $\frac{m-b}{2a}$.

11. [22 - 23 S5 Final Exam - 44] (43%)

- 44. Solve the equation $\frac{1}{x} \frac{1}{\sqrt{x}} = 30$.
 - **A.** $x = -\frac{1}{5}$ or $x = \frac{1}{6}$
 - **B.** $x = -\frac{\sqrt{5}}{5}$ or $x = \frac{\sqrt{6}}{6}$
 - C. $x = \frac{1}{36}$
 - **D.** $x = \frac{1}{25}$ or $x = \frac{1}{36}$

12. [22 - 23 S5 Mid-year Exam - 29] (25%)

- **29.** If $x^2 y + 5x = -2x + 3y + 4 = 0$, find the value of xy.
 - **A.** $-\frac{1}{3}$ or -4
 - **B.** $-\frac{14}{9}$ or 4
 - C. $-\frac{14}{9}$ or -4
 - **D.** $\frac{14}{27}$ or 16

13. [24 - 25 S5 Final Exam - 33] (48%)

33. If
$$\begin{cases} \log_2 y^2 = 2x + 2 \\ (\log_2 y)^2 = x + 7 \end{cases}$$
, then $y = 2x + 3$

- **A.** $\frac{1}{16}$ or 2.
- **B.** $\frac{1}{8}$ or 4.
- C. $\frac{1}{4}$ or 8.
- **D.** $\frac{1}{2}$ or 16.

14. [24 - 25 S5 Mid-year Exam - 22] (85%)

22. Solve
$$x^4 - 3x^2 - 4 = 0$$
.

A.
$$x = -2$$
 or $x = 2$

B.
$$x = -1$$
 or $x = 1$

C.
$$x = -1 \text{ or } x = 4$$

D.
$$x = -2$$
 or $x = -1$ or $x = 1$ or $x = 2$

15. [24 - 25 S5 Mid-year Exam - 23] (66%)

23. Solve
$$3^{2x+1} - 5(3^x) - 2 = 0$$
.

$$A. x = \log_3 2$$

B.
$$x = -\frac{1}{3} \text{ or } x = \log_3 2$$

C.
$$x = -\frac{1}{3}$$
 or $x = 2$

D.
$$x = -1 \text{ or } x = \log_3 2$$

GHS Sorted Past Paper - Conventional Questions S5-01 More about Equations

1. [24 - 25 S4 Final Exam - 16] (48%)

16. Solve the following equations.

(a)
$$3^{x+1} + 3^{2-x} - 28 = 0$$
, (3 marks)

(b)
$$(\log_4 x)^2 - \log_2 x^2 - 12 = 0$$
. **(3 marks)**

- 2. [22 23 S4 Standardized Test 01] (79%)
- 1. If the graphs of $y = 2x^2 5x + 9$ and y = 3x + k do not meet, find the range of values of k.

(3 marks)

- 3. [21 22 S4 Final Exam 11] (36%)
- 11. A wire of length 52 cm is bent into a rhombus ABCD. The diagonals AC and BD intersect at E. It is given that $AC = \frac{2}{x}$ cm and $BD = \left(\frac{8}{x} 16\right)$ cm, where x > 0. Find the area of the rhombus. (5 marks)
- 4. [21 22 S4 Final Exam 08] (73%)
 - 8. Find the range of values of k so that the simultaneous equations $\begin{cases} 2x y + k = 0 \\ y = -x^2 + 4x + 10 \end{cases}$ have real solutions. (4 marks)
- 5. [21 22 S5 Mid-year Exam 18] (36%)
- **18.** Let C be the graph of $y = 2x^2 12kx + 32k^2 + 6$, where k is a real constant.
 - (a) Using the method of completing the square, express the coordinates of the vertex of C in terms of k. (3 marks)
 - (b) Let L be a straight line with slope 4k. Someone claims that if y-intercept of L is negative, then L and C must not intersect. Do you agree? Explain your answer. (3 marks)

6. [21 - 22 S5 Mid-year Exam - 14] (43%)

14. Solve the following equations.

(a)
$$6x + 5\sqrt{3x - 1} = 9$$
 (2 marks)

(b)
$$9^{x+1} + 26(3^x) - 3 = 0$$
 (2 marks)

7. [22 - 23 S4 Standardized Test - 03] (69%)

3. (a) Simplify the expression
$$\frac{x}{x-3} - \frac{7}{x+9}$$
. (2 marks)

(b) Hence, or otherwise, solve
$$\frac{x}{x-3} - \frac{7}{x+9} = 2$$
. **(2 marks)**

(c) By using the results in (b), write down the root(s) of the equation
$$\frac{y^2}{y^2 - 3} - \frac{7}{y^2 + 9} = 2$$
.

(1 mark)

8. [24 - 25 S5 Mid-year Exam - 16] (79%)

16. Solve the following equations.

(a)
$$x = \sqrt{4x + 17} - 3$$
 (2 marks)

(b)
$$\frac{2}{x^2} + \frac{9}{x^2 + 2} = 2$$
 (3 marks)

9. [21 - 22 S4 Final Exam - 07] (57%)

7. Solve the following equations.

(a)
$$\sqrt{x+1} = x-1$$

(b)
$$6^{2x} - 6^{2x-1} = 5$$
 (3 marks)

(c)
$$\frac{1}{2}\log_2 x - 1 = \log_2 4x$$
 (4 marks)