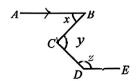
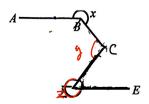

S3 Mathematics Notes

More about Geometric Proofs

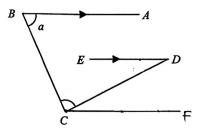

Content:

- > Proofs Relating to Straight Lines and Triangles
- > Proofs Relating to Quadrilaterals

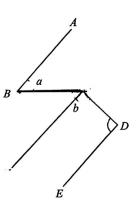
Proofs Relating to Straight Lines and Triangles

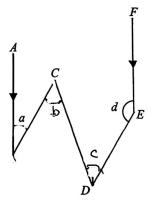

Example 1

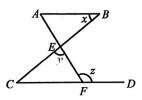
In the figure, AB // DE. Prove that $y = 180^{\circ} + x - z$.



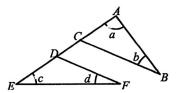
Practice Exercise


1. In the figure AB // DE. Prove that $z = 180^{\circ} - y + x$.

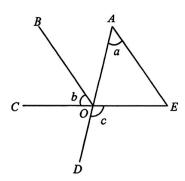

2. In the figure, BA // ED. Prove that $c = 180^{\circ} - a - b$.


3. In the figure, BA // ED. Use two methods to prove that $a = b + c - 180^{\circ}$.

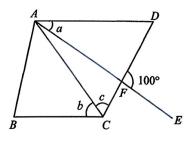
4. In the figure, AB // FE. Prove that $d = 180^{\circ} - a + b - c$.



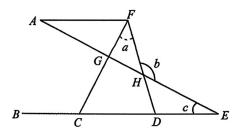
In the figure, AEF, BEC and CFD are straight lines. If $AB \parallel CD$, Brian claims that z = x + y. Do you agree? Explain your answer.



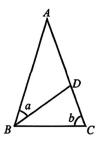
Practice Exercise


5. In the figure, ACDE is a straight line. If $CB \parallel DF$, Jason claims that $a + b + c + d = 180^{\circ}$. Do you agree? Explain your answer.

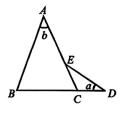
6. In the figure, AD and CE intersect at point O. It is given that $AE \parallel BO$. Sharon claims that a + b = c. Do you agree? Explain your answer.



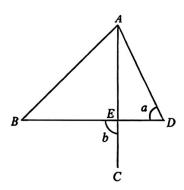
7. In the figure, AE and CD intersect at point F. It is given that AD // BC. Daniel claims that $b-a+c=100^\circ$. Do you agree? Explain your answer.


8. In the figure, C and D are points lying on BE. AE cuts CF and DF at points G and H respectively.

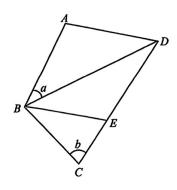
If AF // BE, express $\angle BCF$ in terms of a, b and c.


Example 3

In the figure, $\triangle ABC$ and $\triangle BCD$ are isosceles triangles with AB = AC and BC = BD. Prove that $3b - a = 180^{\circ}$.

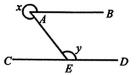


Practice Exercise


9. In the figure, $\triangle ABC$ and $\triangle CDE$ are isosceles triangles with AB = AC and CD = CE. Prove that $4a + b = 180^{\circ}$.

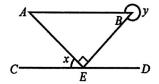
10. In the figure, AC and BD intersect at point E. It is given that AB = BD and AE = BE. Prove that $4a + b = 360^{\circ}$.

11. In the figure, E is a point lying on CD such that $AD \parallel BE$. It is given that AB = AD and BD = CD. Express $\angle BEC$ in terms of a and b.

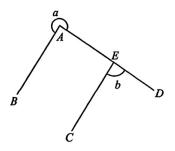


12. In the figure, E is a point lying on BD such that AE = AD = BE. It is given that CD = ED and $AB \parallel DC$.

What is the relation between x and y? Explain your answer.

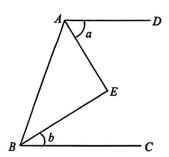


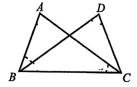
In the figure, $x - y = 180^{\circ}$. Determine whether AB is parallel to CD.



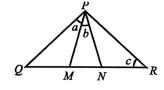
Practice Exercise


13. In the figure, $y - x = 270^{\circ}$. Determine whether AB is parallel to CD.

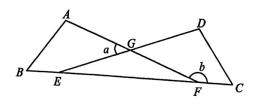

14. In the figure, E is a point lying on AD such that $a + b = 360^{\circ}$. Determine whether AB is parallel to EC.


15. In the figure, $b-a+c=180^{\circ}$. Prove that BA // ED.

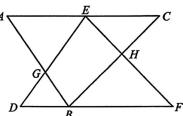
16. In the figure, AE and BE bisect $\angle BAD$ and $\angle ABC$ respectively. If $AE \perp BE$, prove that $AD \parallel BC$.



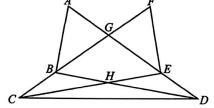
In the figure, $\triangle ABC \cong \triangle DCB$. Prove that $2a + b + c = 180^{\circ}$.


Practice Exercise

17. In the figure, QMNR is a straight line. $\triangle PQN \cong \triangle PRM$. Prove that $2a + b + 2c = 180^{\circ}$.

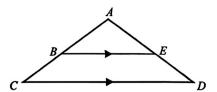


18. In the figure, E and F are points lying on BC such that $\triangle ABF \cong \triangle DCE$.

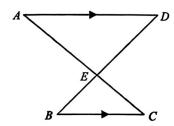

AF and DE intersect at point G. Prove that $a + 2b = 360^{\circ}$.

19. In the figure, B and E are points lying on DF and AC respectively such that $\triangle ABC \cong \triangle DEF$. AB and DE intersect at point G while BC and EF intersect at point H. It is given that AC // DF. Prove that $\triangle AGE$ is an isosceles triangle.

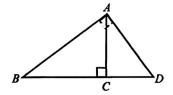
20. In the figure, AGED, FGBC, BHD and EHC are straight lines. It is given that $\triangle ABD \cong \triangle FEC$ and BC = ED. Prove that $\triangle HCD$ is an isosceles triangle.



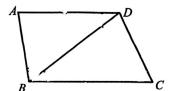
Mathematical Skills: Three pairs of Common Similar Triangles


Type 1

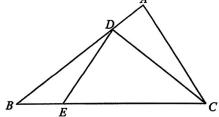
In the figure, BE // CD. ABC and AED are straight lines.


Type 2

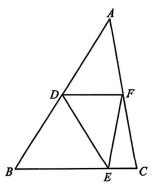
In the figure, AC and BD intersect at point E. It is given that $AD \parallel BC$.


Type 3

In the figure, BCD is a straight line.

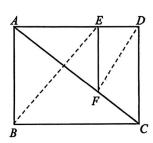

In the figure, AD // BC and $\angle ABD = \angle BCD$.

- (a) Prove that $\triangle ABD \sim \triangle DCB$.
- **(b)** Prove that $AB \times BD = AD \times DC$.

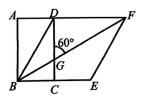


Practice Exercise

- 21. In the figure, D and E are points lying on AB and BC respectively such that CD bisects $\angle ADE$ and AC = CD = BD. It is given that $\angle ACD = \angle BDE$.
 - (a) Prove that $\triangle ABC \sim \triangle DCE$.
 - **(b)** Prove that $AB \times CE = BC \times DC$.

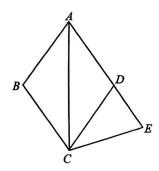


- 22. In the figure, D, E and F are points lying on AB, BC and AC respectively. It is given that DF // BC, DF bisects $\angle ADE$ and $\angle AFE$, and CE : DF : BE = 1 : 2 : 3.
 - (a) Prove that $\triangle ABC \sim \triangle EDF$.
 - (b) Hence, prove that D is the mid-point of AB.

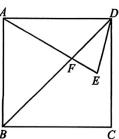


- 23. In the figure, ABCD is a rectangle. E and F are points lying on AD and AC respectively such that $AB \parallel EF \parallel DC$.
 - (a) Prove that $\triangle ABC \sim \triangle FEA$.
 - (b) Join BE and DF. Are the areas of $\triangle ABE$ and $\triangle ADF$ the same? Explain your answer.

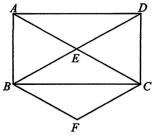
(a)

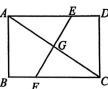


In the figure, ABCD is a rectangle. BEFD is a parallelogram. ADF and BCE are straight lines. CD and BF intersect at point G. If BG = GD and $\angle DGF = 60^{\circ}$, prove that $\triangle BEF$ is an isosceles triangle.

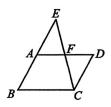


Practice Exercise

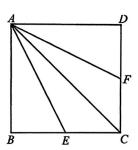

24. In the figure, ABCD is a rhombus. AD is produced to point E such that AC = AE. It is given that $\angle ACB = \angle DCE$. Prove that $\triangle CDE$ is an isosceles triangle.


25. In the figure, ABCD is a square. AE and BD intersect at point F. It is given that $\angle CDE = 15^{\circ}$ and DE = DF. Prove that $\triangle ADE$ is an isosceles triangle.

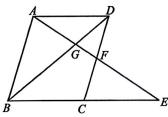
26. In the figure, ABCD is a rectangle. AC and BD intersect at point E. It is given that BFCE is a rhombus and $\angle BFC = 120^{\circ}$. Prove that $\triangle ABE$ is an equilateral triangle.

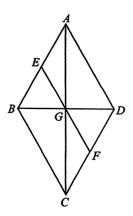


In the figure, ABCD is a rectangle. E and F are points lying on AD and BC respectively. AC and EF intersect at point G. It is given that ED = BF. Simon claims that G is the mid-point of EF. Do you agree? Explain your answer.



Practice Exercise

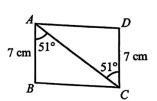

27. In the figure, ABCD is a parallelogram. BA is produced to E. CE and AD intersect at point F such that CF = EF. Kelly claims that A is the mid-point of BE. Do you agree? Explain your answer.


28. In the figure, ABCD is a square. E is the mid-point of BC. F is a point lying on CD such that AC bisects $\angle EAF$. Barry claims that F is the mid-point of CD. Do you agree? Explain your answer.

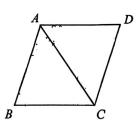
29. In the figure, ABCD is a parallelogram. BC is produced to point E. AE cuts CD and BD at points F and G respectively. If F is the mid-point of CD, prove that 3AG = 2EF.

30. In the figure, ABCD is a rhombus. AC and BD intersect at point G. E and F are points lying on AB and CD respectively such that AE = BE. Use two different methods to prove that F is the mid-point of CD.

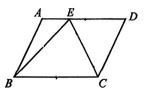
Key Key	Points: Condition	s for Parallelogri	ams	
Graphs	$\begin{bmatrix} A & & \\ & & \\ & & \\ B & & \end{bmatrix}^D$	$\bigcup_{B}^{A} \bigcap_{C}^{D}$	$B \xrightarrow{A} C$	$A \longrightarrow D$ $B \longrightarrow C$
If	AD = BC and $AB = DC$	$\angle A = \angle C$ and $\angle B = \angle D$	AE = EC and $BE = ED$	AD // BC and $AD = BC$
Then		ABCL	is a parallelogram	_
Reason	(opp. sides equal)	(opp. ∠s equal)	(diags. bisect each other)	(2 sides // and equal)
ELet's	Try			
In each of	the following, determ	nine whether ABCD	is necessarily a parallelogra	um. Put a tick '√' in the
	box. If it is, give a rea			
1.	$\frac{A}{B}$ $\frac{4}{C}$	$\sqrt{\frac{2}{3}}$	$A \longrightarrow 5$ $B \longrightarrow 5$	\int_{C}^{D}
	Yes, reason:		Yes, reason:	
	No		No	
3.	A 70° 110° D D D D D D D D D D D D D D D D D D D	4.		
	Yes, reason:		Yes, reason:	
	No		No	
5.	A S B E S C AEC and BED are straight	6. lines,	A 65° 115° B	C
7	Yes, reason:		Yes, reason:	
	√o		[] _{No}	

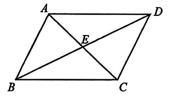

In each of the following, prove that ABCD is a parallogram.

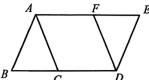
(a) A = 10 cm $D = 110^{\circ}$ C = 10 cm


BEC is a straight line.

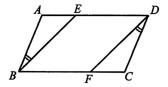
Practice Exercise


31. Prove that ABCD is a parallogram.

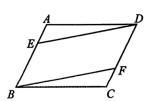

32. In the figure, $\triangle ABC \cong \triangle CDA$. Prove that ABCD is a parallelogram.


33. In the figure, E is a point lying on AD such that CE bisects $\angle BED$ and BE = BC. If AD = BC, prove that ABCD is a parallelogram.

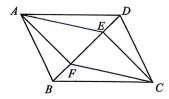
34. In the figure, AC and BD intersect at point E such that $\triangle ABE \cong \triangle CDE$ and $\triangle ADE \cong \triangle CBE$. Use two different methods to prove that ABCD is a parallelogram.

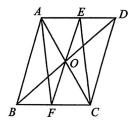


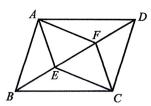
In the figure, ACDF is a parallelogram. AFE and BCD are straight lines. $\triangle ABC \cong \triangle DEF$. Prove that ABDE is a parallelogram.



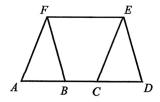
Practice Exercise


35. In the figure, ABCD is a parallelogram. E and F are points lying on AD and BC respectively such that $\angle ABE = \angle CDF$. Prove that EBFD is a parallelogram.

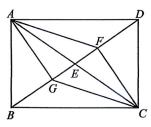

36. In the figure, ABCD is a parallelogram. E and F are points lying on AB and CD respectively such that $\angle AED = \angle CFB$. Prove that BFDE is a parallelogram.


37. In the figure, ABCD is a parallelogram. E and F are points lying on BD such that AF = CE and BF = DE. Prove that AFCE is a parallelogram.

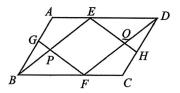
38. In the figure, E and F are points lying on AD and BC respectively such that AFCE is a parallelogram. AC, BD and EF intersect at point O. Use two different methods to prove that ABCD is a parallelogram.

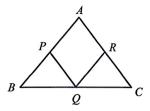


In the figure, ABCD is a parallelogram. E and F are points lying on BD such that BE = EF = FD. Prove that AECF is a parallelogram.

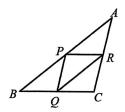


Practice Exercise

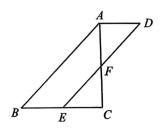

39. In the figure, ABCD is a straight line. ACEF is a parallelogram and AB = CD. Prove that BDEF is a parallelogram.


40. In the figure, ABCD is a rectangle. AC and BD intersect at point E. F and G are points lying on BD such that $\angle AFD = \angle CGB$. Is AGCF a parallelogram? Explain your answer.

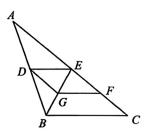
41. In the figure, ABCD is a parallelogram. E, F, G and H are points lying on AD, BC, AB and CD respectively. BE and FG intersect at point P while DF and EH intersect at point Q. It is given that BG = DH and BF = DE. Prove that EPFQ is a parallelogram.

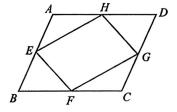


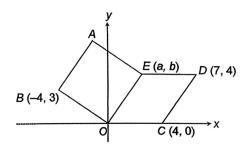
In the figure, P, Q and R are the mid-points of AB, BC and CA respectively. Prove that APQR is a paralleogram.

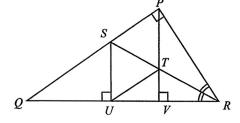


Practice Exercise


42. In the figure, P, Q and R are the mid-points of AB, BC and CA respectively. Prove that BPRQ is a paralleogram.


43. In the figure, E is the mid-point of BC. AC and DE intersect at point F such that F is the mid-point of AC and DE. Prove ABED is a parallelogram.


44. In the figure, D and E are the mid-points of AB and AC respectively. F and G are the mid-points of CE and BE respectively. Prove DGFE is a parallelogram.


45. In the figure, ABCD is a quadrilateral. E, F, G and H are the mid-points of AB, BC, CD and AD respectively. Is EFGH a parallelogram? Explain your answer.

- 46. The figure shows a square ABOE and a quadrilateral EOCD on a rectangular coordinate plane.
 - (a) Find the values of a and b.
 - (b) Is EOCD a parallelogram? Explain your answer.

- 47. In the figure, PSQ and QUVR are straight lines. RS bisects $\angle PRQ$ and cuts PV at T. $PQ \perp PR$, $PV \perp QR$ and $SU \perp QR$.
 - (a) Prove that $\triangle PSR \cong \triangle USR$.
 - **(b)** Prove that PS = PT.
 - (c) Prove that *PSUT* is a rhombus.

