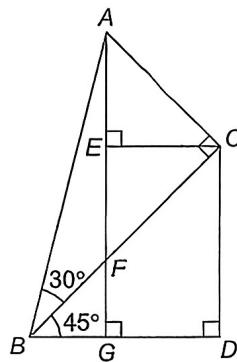


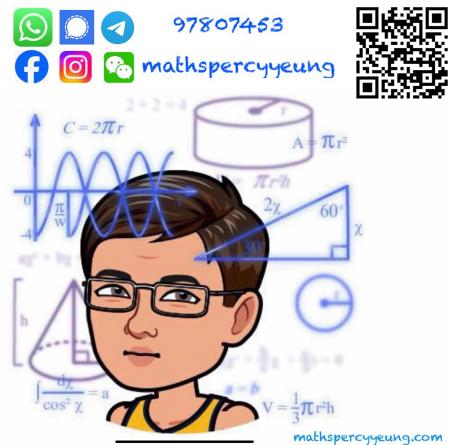
WKF F3 Ch9 Trigonometric Relations Consolidated Assignment 4

Grade 9 Mathematics Term 1 Consolidated Assignment 4

Name: _____ (____)


Date: _____

Class: _____


Grade: _____

Content: Ch.9 Trigonometric Relations

1. In the figure, $AEFG$, BFC and BGD are straight lines. $\angle ABC = 30^\circ$, $\angle CBD = 45^\circ$ and $\angle ACB = \angle AEC = \angle AGD = \angle BDC = 90^\circ$. Let $CD = a$.

(a) Express the lengths of AC and BC in terms of a .
 (b) Hence, find the value of $\sin 75^\circ$.

2. Without using a calculator, find the values of the following expressions.

$$(a) \quad \cos^2 3^\circ + \cos^2 6^\circ + \cos^2 9^\circ + \dots + \cos^2 45^\circ + \dots + \cos^2 81^\circ + \cos^2 84^\circ + \cos^2 87^\circ$$

$$(b) \frac{\tan 1^\circ \tan 3^\circ \tan 5^\circ \dots \tan 85^\circ \tan 87^\circ \tan 89^\circ}{\sin^2 1^\circ + \sin^2 2^\circ + \sin^2 3^\circ + \dots + \sin^2 87^\circ + \sin^2 88^\circ + \sin^2 89^\circ}$$

3. It is given that $\sin \theta \cos \theta = \frac{12}{25}$, where θ is an acute angle and $\sin \theta > \cos \theta$.

(a) By using the identity $a^2 + b^2 \equiv (a+b)^2 - 2ab$, find the value of $\sin^4 \theta + \cos^4 \theta$ without evaluating θ .

(b) (i) By expressing $(\sin \theta + \cos \theta)^2$ in terms of $\sin \theta \cos \theta$, find the value of $\sin \theta + \cos \theta$ without evaluating θ .

(ii) By expressing $(\sin \theta - \cos \theta)^2$ in terms of $\sin \theta \cos \theta$, find the value of $\sin \theta - \cos \theta$ without evaluating θ .

(c) Hence, find the value of $\frac{\sin^4 \theta + \cos^4 \theta}{\sin^4 \theta - \cos^4 \theta}$ without evaluating θ .

(Challenging_3B09_e Q.11)

END OF ASSIGNMENT