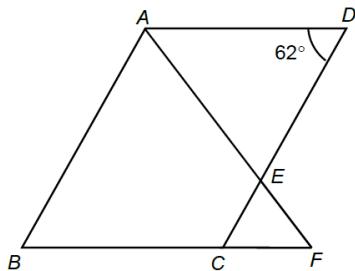


Form Three Mathematics Test (2023–2024)

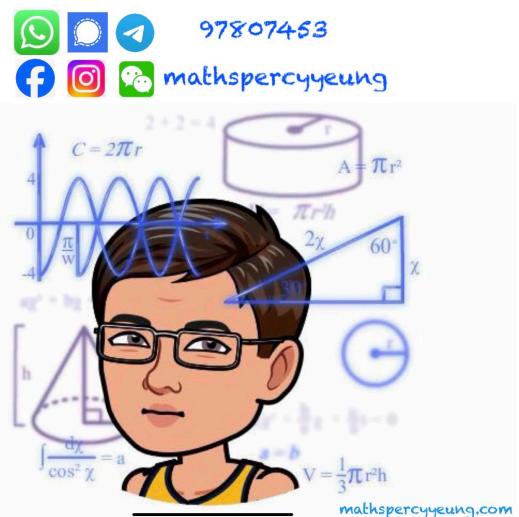
Ch.5 Quadrilaterals

Class: F. 3 ()

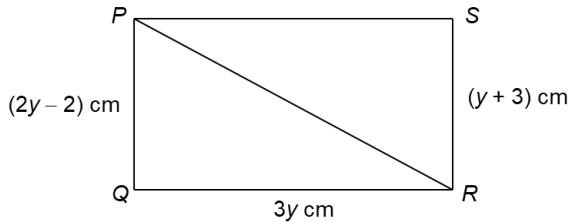
Name: _____ ()


Time Allowed: 35 minutes

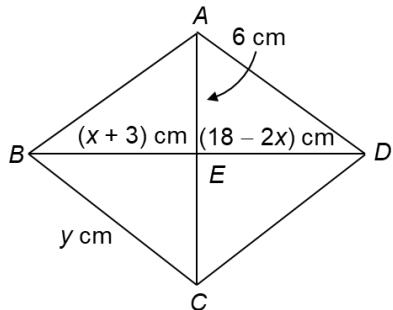
Mark	/44	Class Average
Parent's Signature:		


Unless specified, the figures are not necessary drawn to scale.

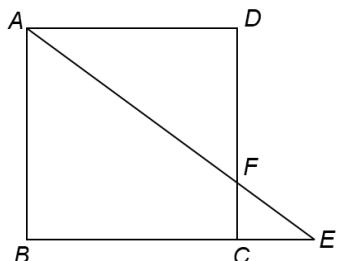
Section A: Multiple Choice (12 marks)


1. In the figure, $ABCD$ is a parallelogram. BC is produced to a point F such that AF intersects CD at E and $AF = BF$. Find $\angle AFB$.

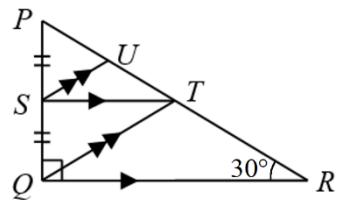
- A. 62°
- B. 59°
- C. 56°
- D. 53°



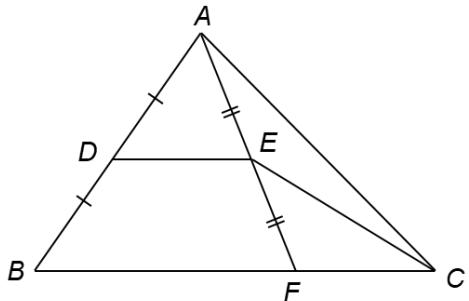
2. In the figure, $PQRS$ is a rectangle. Find the length of PR .


- A. 5 cm
- B. 8 cm
- C. 15 cm
- D. 17 cm

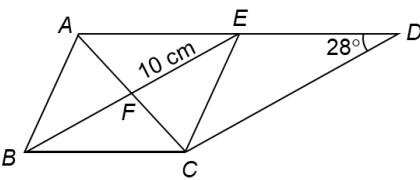
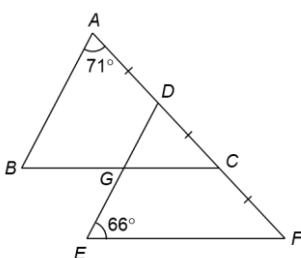
3. In the figure, $ABCD$ is a rhombus. The diagonals AC and BD intersect at E such that $AE=6$ cm. Find the value of y .


- A. 8
- B. 10
- C. 12
- D. 16

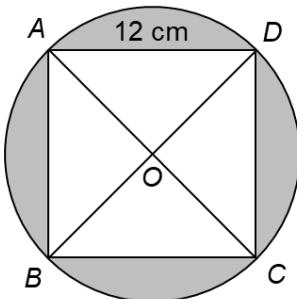
4. In the figure, $ABCD$ is a square. BC is produced to E such that $CE = 16$ cm. AE and CD intersect at F . If $EF = 20$ cm, find the length of AF .


- A. 48 cm
- B. 60 cm
- C. 64 cm
- D. 80 cm

5. In the figure, $PR = 4$ cm, $PR = 2PQ$, $\angle PRQ = 30^\circ$. Which of the following is not true?

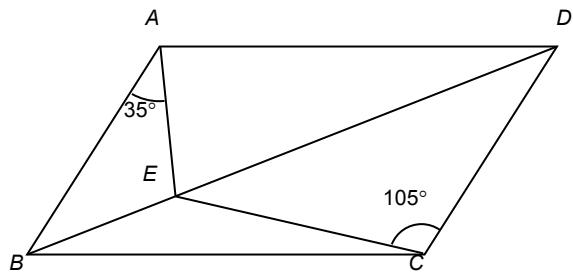


- A. $\angle QPR = 60^\circ$
- B. $\triangle PQT$ is an equilateral triangle
- C. $SU = 1$ cm
- D. $ST = 2$ cm

6. In the figure, D and E are the mid-points of AB and AF respectively. BFC is a straight line. If the ratio of the area of $\triangle ABF$ to the area of $\triangle AFC$ is $5 : 2$, find $FC : DE$.

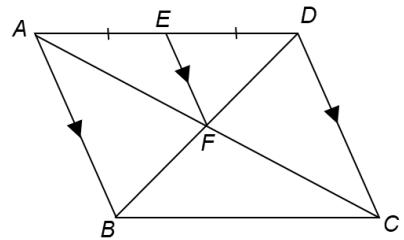

- A. $4 : 5$
- B. $5 : 4$
- C. $5 : 14$
- D. $14 : 5$

Section B: Short Questions (10 marks, 2 marks for each answer)

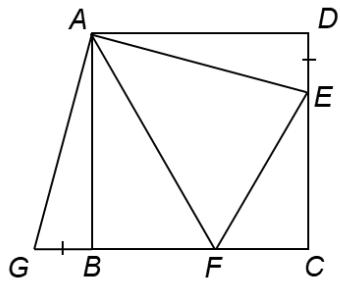
Question	Answer
<p>7. In the figure, $ABCE$ and $BCDE$ are parallelograms. AED, AFC and BFE are straight lines. If $\angle ABC = 70^\circ$, $\angle ADC = 28^\circ$ and $EF = 10 \text{ cm}$, find $\angle ABE$ and the length of CD.</p>	
<p>8. In the figure, C and D are points on AF such that $AD = DC = CF$. G is the mid-point of both BC and DE. It is given that $\angle BAF = 71^\circ$ and $\angle DEF = 66^\circ$. Find $\angle DCG$.</p>	


9.

The circle in the figure passes through the vertices of square $ABCD$. The side length of the square is 12 cm. AC and BD are diameters of the circle, and they intersect at O . Find AO and the area of the shaded region, correct to 3 significant figures.



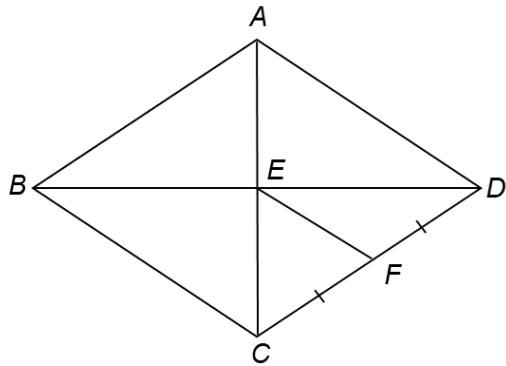
Section C: Long Questions (22 marks)


10. In the figure, BED is a diagonal of parallelogram $ABCD$. If $\angle BAE = 35^\circ$, $\angle DCE = 105^\circ$ and $AE = BE$, find $\angle BEC$. (4 marks)

12. In the figure, AC and BD intersect at F . E is the mid-point of AD and $AB \parallel EF \parallel DC$. Prove that $ABCD$ is a parallelogram. (3 marks)

13. In the figure, $ABCD$ is a square. CB is produced to G such that $\angle BAG = 15^\circ$. E is a point on CD such that $BG = DE$. It is given that F is a point on BC such that $\angle BAF = 30^\circ$.

(a) Prove that

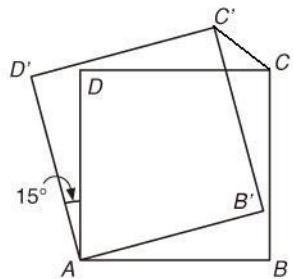

(i) $\triangle ABG \cong \triangle ADE$,

(ii) $\triangle AEF \cong \triangle AGF$.

(b) Find $\angle AFE$.

(6 marks)

14. In the figure, $ABCD$ is a rhombus. AC and BD intersect at E , and F is the mid-point of CD .



(a) Prove that $\triangle DEF$ is an isosceles triangle.
(b) Hence, if $\angle CFE = 66^\circ$, find $\angle CBD$.

(5 marks)

Section D: Bonus (2 marks) Only answers are required.

15. In the figure, a square $ABCD$ is rotated through 15° anti-clockwise about A to $AB'C'D'$. Find $\angle CC'B'$.

- END OF PAPER