

**HW
2324_F3_CH10_**
**Applications of
Trigonometry**

Three Mathematics Test (2023–2024)

h.10 Applications of Trigonometry Solutions

Class

Name: _____ ()

Time

Mark	/31	Class Average
------	------------	---------------

Date

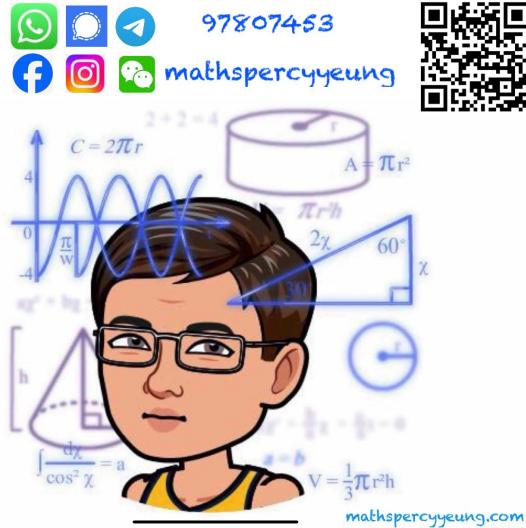
Parent's Signature:

Unless

• e not necessary drawn to scale.

Section

() marks)

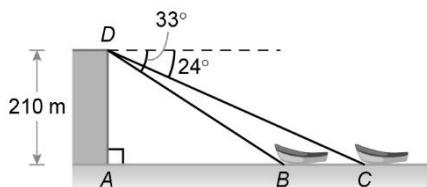

Put th

s provided in the box below.

1	2	3	4	5
Answer				

1. Which of the following roads is the steepest?

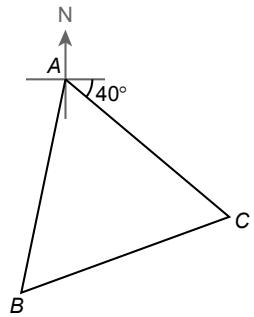
- A. A road with the gradient of 0.27.
- B. A road with the gradient of $\frac{1}{4}$.
- C. A road with the gradient of 1:5.
- D. A road with the inclination of 13° .



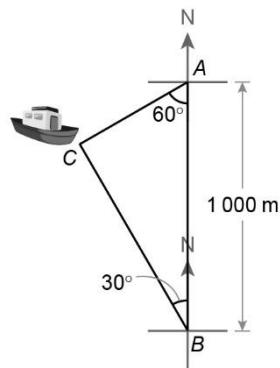
2. Kelly runs up a slope with the inclination of 10° and rises 50 m vertically. Find her actual distance moved correct to 3 significant figures.

- A. 8.68 m
- B. 8.82 m
- C. 284 m
- D. 288 m

(1 mark)

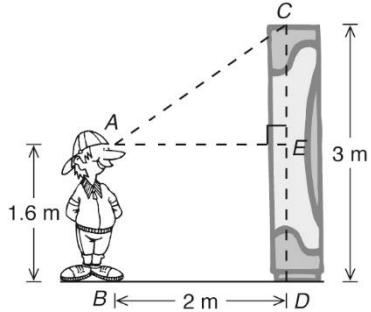

3. In the figure, the angles of depression of two boats B and C from the top D of a cliff are 33° and 24° respectively. D is 210 m above the sea level. Find the distance between the two boats correct to 3 significant figures.

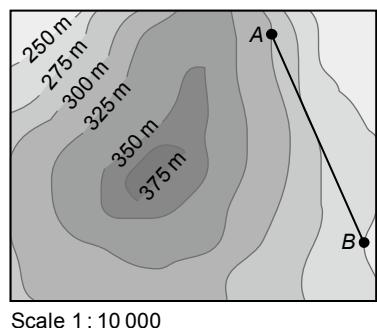
- A. 148 m
- B. 200 m
- C. 230 m
- D. 368 m


(1 mark)

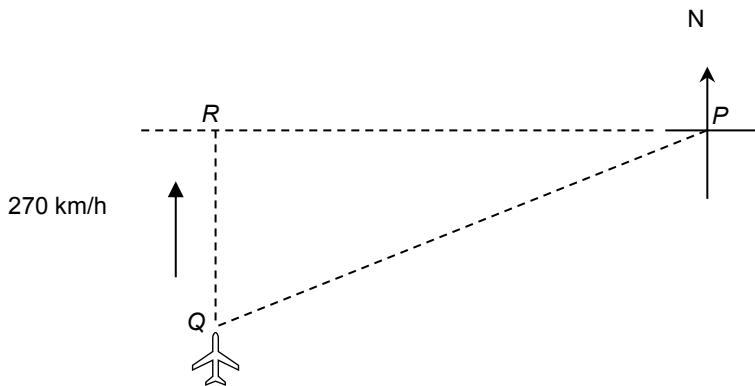
4. In the figure, $\triangle ABC$ is an equilateral triangle. Find the compass bearing of C from B .

- A. N10°E
- B. N70°E
- C. S10°E
- D. S70°E


5. On a straight coastline, lighthouse A is 1 000 m due north of lighthouse B . The compass bearings of ship C from lighthouses A and B are S60°W and N30°W respectively. Find the shortest distance of ship C from the coastline.

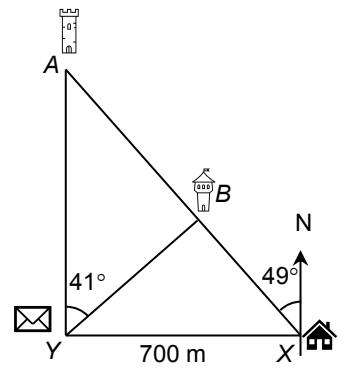

- A. $\frac{250\sqrt{3}}{3}$ m
- B. $250\sqrt{2}$ m
- C. $250\sqrt{3}$ m
- D. $500\sqrt{3}$ m

Section B: Long Questions (21 marks)

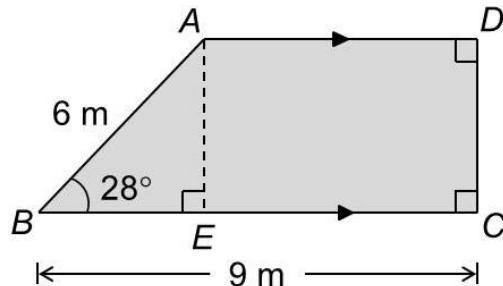

1. In the figure, Michael is looking at the top C of a sculpture CD of height 3 m. Michael is 2 m away from the sculpture and his eye level is 1.6 m above the ground. What is the angle of elevation of the top of the sculpture from Michael? (4 marks)

2. The figure shows a map with the scale of $1:10\,000$. From the map, we have $AB = 3\text{ cm}$. Find the gradient of AB . (3 marks)

3. As shown in the figure, the compass bearing of Q from airport P is S 63° W and the distance between them is 3000 km. R is due west of P and due north of Q . If a plane flies due north from Q at a constant speed of 270 km/h, will it reach R within 5 hours? Explain your answer. (3 marks)


4. In the figure, Janice observes two towers A and B from his house X . She finds that A , B and X lie on a straight line and the compass bearing of B from X is N 49° W. Janice then walks 700 m due west to post office Y . She finds that A is due north of Y and the compass bearing of B from Y is N 41° E.

(a) Find the distance between B and X .


(b) Find the distance between A and B .

(Give your answers correct to 3 significant figures.)

(6 marks)

5. The figure shows a trapezium where $AD \parallel BC$ and $\angle ADC = \angle BCD = 90^\circ$. E is a point on BC such that $AE \perp BC$. $AB = 6$ m, $BC = 9$ m and $\angle ABE = 28^\circ$.

(a) Find the length of AD correct to 3 significant figures.
(b) Ivy claims that the area of trapezium $ABCD$ is greater than 18 m 2 . Do you agree? Explain your answer.

(5 marks)