
S3 First Term Uniform Test (2025-2026) Mathematics (1 hour)

Date:	24th October 2025	Name:	
Time:	9:45 a.m. – 10:45 a.m.	Class:	No.:

Instructions to students:

- 1. This paper consists of TWO parts, Conventional Questions and Bonus Question. There are Section A and Section B in Conventional Questions. Section A carries 53 marks, Section B carries 11 marks and Bonus Question carries 4 marks.
- 2. The maximum score of this paper is 64.
- 3. Attempt ALL questions in Conventional Questions. Write your answers in the spaces provided in this Question / Answer Book.
- 4. Unless otherwise specified, show your workings clearly.
- 5. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
- 6. The diagrams in this paper are not necessarily drawn to scale.

Conventional Questions

Section A	(53 marks)
Section A	(33 mains)

1.	Ma	ke y the	subject	of the form	ula $4x = \frac{5x - 5x}{2y - 5}$	$\frac{-y}{-5}$.			(3 marks)
•••••					••••••				
 2.	Sin	aplify th	e follow	ing express	ions and expr	ress the answ	vers wit	h positive indices.	
_		$\frac{4(b^3)}{8b^5}$			$\frac{(5x^{-3})^2(125x^5}{(25x^9)^{-3}}$			$\left(\frac{6m^2n^{-4}}{m^{-3}n^2}\right)^2 \div \left(\frac{12m^5n^{-2}}{n^3}\right)$	(8 marks)
			, .						
******				V	100000000000000000000000000000000000000		***		
•••••									
							•••••••		

(4 marks)

^	T 4 1
4	Factorize

	- 2		- 2
(a)	$6x^2 -$	13xy +	6y2

(b)	$6x^2 - 13xy + 6y^2 - 6x + 9y.$	(3 marks)

***************************************	•••••		
	.v.c.,	 ***************************************	
****************		 ***************************************	
	**************************************	 ••••••	

- 4. (a) Solve the inequality $\frac{1}{2} \frac{x+2}{3} \le \frac{3-x}{4}$ and represent the solutions graphically.
 - (b) Write down all negative even integers satisfying the inequality in part (a).

		ation.			
	(a)	$(3 \times 10^{-7}) \div (4 \times 10^{-3})$	(b)	$\frac{0.000000048 - 0.00000012}{900000 \times 2000000}$	(4 marks)
•••••					
••••					
6.		Without using a calculator, convert Without using a calculator, express			
	(0)	Willout using a outoutator, express	, , , , , , , , , , , , , , , , , , ,	3 × 2 · 2 · as a omary number.	
					(5 marks)
			************************		•••••

Without using a calculator, evaluate the following expressions and express the answers in scientific

§3 Mathematics Page 5 of 12 pages In bottle A, 20% of the liquid is alcohol. In bottle B, 60% of the liquid is alcohol. 750 mL of the liquid in bottle A is mixed with the liquid in bottle B. If the mixture contains at least 50% of alcohol, find the minimum possible volume of the liquid in bottle B. (4 marks) A residential flat was worth \$4 500 000 in 2023. The value of the flat increased by 10% per year in the following two years and then increased by 8% in each subsequent year. Find the value of the flat in 2025. (b) Find the value of the flat in 2027. (4 marks) Page 6 of 12 pages 9. Felix deposited \$32 000 in bank P at a simple interest rate of 3.5% p.a. Gary deposited \$32 000 in

? .	bank Q at an interest rate of 3% p.a., compounded quarterly. Gary claims that he will receive a larger amount than Felix after 12 years. Do you agree? Explain your answer.
	(4 marks)
•••••	
•••••	
0.	Sally borrows a sum of money from a bank at an interest rate of 3% p.a., compounded half-yearly and then invests the sum of money in a bond. The value of her investment increases by 3.5% per year. After 2 years, she repays the loan that she owes the bank and she earns \$2367. How much does Sally borrow? (4 marks)
·	

11. The table below shows the salaries tax rates of a city.

Net chargeable income	Rate
On the first \$50 000	2%
On the next \$50 000	6%
On the next \$50 000	10%
On the next \$50 000	14%
Remainder	17%

Janice is a citizen of the city. Her net chargeable income is \$160 000 and she is entitled to a total allowance of \$140 000.

(a)	Find her salaries tax payable.	
(b)	Find the percentage of her salaries tax payable to her annual income.	
		(5 marks)
······································		

9988#898 y		

•••••		

	The base radius and the height of a circular cylinder are in the ratio 2:3. If the base radius increases by 20% and its height decreases by 30%, find the percentage change in the total surface area of the circular cylinder. (5 marks)
	, , , , , , , , , , , , , , , , , , ,
-	
	······································
•	

Section B (11 marks)

13.	Simplify	$\frac{36^{n} \times 6^{n+2} - 90 \times 6^{3n-1}}{7 \times 4^{n} \times 3^{2n} \times 6^{n}}$	1	44 - 1 >
		$7\times4^n\times3^{2n}\times6^n$	where n is an integer.	(4 marks)
*******				••••••
	••••••		,	

	•••••			
			,	
	••••••			

				•••••••••••••••••••••••••••••••

	·····			
*******	••••••			

	•••••••			

			•••••••••••••••••••••••••••••••••••••••	18818888888888888888888888888888888888

14. It is given that $(a-b)^2 \ge 0$ for any real numbers a and b.

(a) Prove that
$$\frac{a^2 + b^2}{2} \ge ab$$
.

(b) Let c, d and e be any non-negative real numbers.

(1) By using the result of (a), prove that $cd \le \frac{1}{2e} + \frac{1}{2}$, where e	(i)	$cd \le \frac{c^2}{2e} + \frac{d^2e}{2}$, where $e \ne 0$	By using the result of (a), prove that
--	-----	--	--

(ii)	By using the result of (a),	prove that $(1+c)^2(1+c)^2$	$(1+d)^2(1+e)^2 \ge 64cde$.
------	-----------------------------	-----------------------------	------------------------------

(7 marks)
•••••
•••••

S3 Mathematics Page 11 of 12 pages

Bonus Question (4 marks)

15.	Let N be a 10-digit binary number. Use N to create another binary number M by changing each digit '0 in N to '1' and each '1' in N to '0' and ignore the leading '0's, e.g. if $N = 1101011100_2$ then $M = 10100011_2$ Find the number N such that the difference between N and M has the fewest number of digits '1' in its binary representation.
