TT F4 Ch2 Equation of Straight Lines

A. Review

- I. Pre-lesson
- 1. Find the distance between the points A and B. A(-1, 9), B(5, 1)
- 2. Find the slope of the straight line PQ. P(-2, -6), Q(-7, -9)

3. If P(3, 1), Q(q + 1, 3) and R(9, 7) are collinear, find the value of q.

4. L_1 is a straight line passing through (-5, -3) and (-1, 5). L_2 is a straight line passing through (-2, 1) and (6, -3). Determine whether L_1 is perpendicular to L_2 .

II. Teaching example and classwork

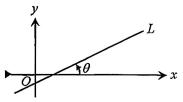
- 5. L_1 is a straight line with slope 2. L_2 is a straight line passing through A(k, -5) and B(-3, 3). Find the value of k in each of the following cases.
 - (a) $L_1 // L_2$

(b) $L_1 \perp L_2$

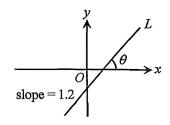
- 6. In each of the following, find the coordinates of the mid-point of the line segment AB.
 - (a) A(5, 8), B(3, 10)

(b) A(-7, 6), B(-9, -2)

7. P is a point lying on the line segment joining A(8,7) and B(-7,-3). If AP:PB=2:3, find the coordinates of P.


8. Q is a point lying on the line segment joining A(-6, -1) and B(6, 5). If AB = 6QB, find the coordinates of Q.

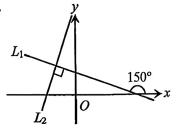
B. Section 2.1 Slope and Inclination


Inclination

For a straight line *L* with inclination θ (where $\theta \neq 90^{\circ}$): slope of $L = \tan \theta$

 θ is the angle measured anticlockwise from the positive x-axis to L.

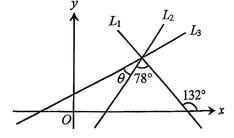
1. Find the inclination θ of L, correct to 3 significant figures.


II. Teaching example and classwork

2. Find the slope and the inclination of the straight line L passing through A(3,3) and the origin.

3. Find the slope and the inclination of the straight line L passing through P(5,3) and Q(-1,-2). (Give the answers correct to 3 significant figures if necessary.)

- 4. In the figure, the straight lines L_1 and L_2 are perpendicular to each other.
 - (a) Find the inclination of L_2 .
 - (b) Find the slope of L_2 .


(Leave the radical sign ' $\sqrt{\ }$ ' in the answer.)

	30°	45°	60°
sin θ			
$\cos \theta$			
$\tan \theta$			

Level 2

- 5. In the figure, straight lines L_1 , L_2 and L_3 intersect at the same point. Denote the acute angle between L_2 and L_3 by θ .
 - (a) Find the inclination of L_2 .
 - (b) If the slope of L_3 is 0.5, find θ , correct to the nearest degree.

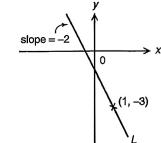
Section 2.2 Finding Equation of Straight Lines

- 1. Please refer to the textbook P.7 12.
- 2. Video from Identity: https://youtu.be/FLJtpS15Vso
 - 00:05 quick review on basics of coordinate geometry
 - 02:34 the fundamental idea and point-slope form
 - 11:01 two-point form
 - 13:47 slope-intercept form
 - 15:32 two-intercept form (Enhancement)

I. Pre-lesson

Find the equations of straight lines by considering different conditions.

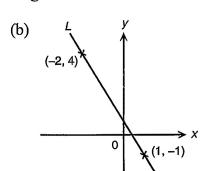
	Point-slope form	Two-point form	Slope-intercept from	
Graph	y slope = m $P(x_1, y_1)$ X	$ \begin{array}{c} A(x_1, y_1) \\ B(x_2, y_2) \\ X \end{array} $	$C = \begin{cases} (0, c) & \text{slope} = m \\ 0 & \text{slope} \end{cases}$	
Equation of <i>L</i>				


II. Teaching example and classwork

1. In each of the following, find the equation of the straight line L.

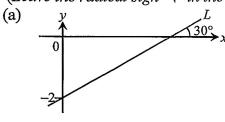
(a)

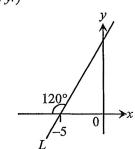
(b)

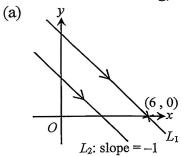


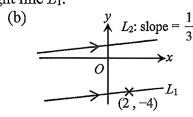
- 2. In each of the following, find the equation of the straight line satisfying the given conditions.
 - (a) It passes through (3, 1), and its slope is 4.
 - (b) It passes through (-5, 2), and its slope is -1.

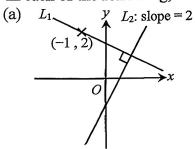
- 3. In each of the following, find the equation of the straight line satisfying the given conditions.
 - (a) Its slope is 3, and its y-intercept is -2.
- (b) Its slope is $-\frac{2}{3}$, and its y-intercept is 5.

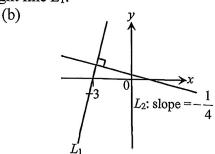

4. In each of the following, find the equation of the straight line L.



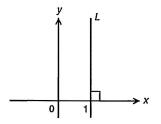

5. Find the equation of the straight line with x-intercept -2 and y-intercept -5.


6. In each of the following, find the equation of the straight line L. (Leave the radical sign ' $\sqrt{}$ ' in the answers if necessary.)




7. In each of the following, find the equation of the straight line L_1 .

8. In each of the following, find the equation of the straight line L_1 .




Equation of special straight lines								
Oblique lines Passing through the Origin Horizontal Lines		Vertical Lines						
Graph Graph U V V V V V V V		$ \begin{array}{c} & \downarrow \\ $	$\begin{array}{c c} y & L \\ \hline \\ O & h \\ \end{array}$					
Equation of L $y = mx$		y = k	x = h					

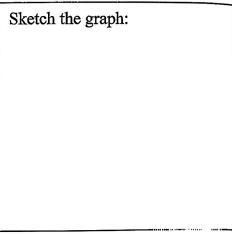
9. In each of the following, find the equation of the straight line L.

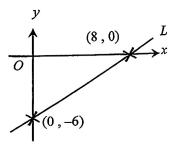
(a)

(b)

- 10. In each of the following, find the equation of the straight line satisfying the given conditions.
 - (a) It passes through the origin, and its slope is $-\frac{1}{6}$
- (b) It passes through the origin and (-1, 4).

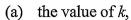
- (c) It passes through (2, -2) and parallel to the *x*-axis.
- (d) It passes through (1, -3) and perpendicular to the *x*-axis.

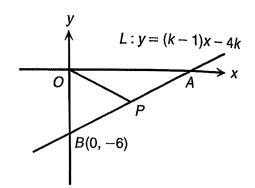

- 11. In the figure, the straight line L passes through A(3, 3), and cuts the y-axis at B. The y-intercept of L is -3.
 - (a) Find the equation of L.
 - (b) Are the three points A, B and C(2, 1) collinear? Explain your answer.


- 12. It is given that the straight line L passes through x-intercept -5 and has slope $\frac{2}{3}$.
 - (a) Find the equation of L.
 - (b) Does the point Q(-2, 2) lie on L? Explain your answer.

Sketch the graph:					

- 13. It is given that the straight line L passes through (2, -1) with slope 3. L cuts the y-axis at P.
 - (a) Find the equation of L.
 - (b) Find the coordinates of P.


- 14. In the figure, the straight line L passes through (0, -6) and (8, 0).
 - (a) Find the slope of L.
 - (b) ℓ is a straight line passing through (2, -5). If ℓ is perpendicular to L, find the equation of ℓ .


- 15. It is given that the straight line L_1 passes through (-2, -3) and with y-intercept 1. The straight line L_2 is perpendicular to L_1 and with x-intercept 6.
 - (a) Find the equation of L_1 .
 - (b) Find the equation of L_2 .

Sketch the graph:	

16. In the figure, the straight line L: y = (k-1)x-4k cuts the x-axis and the y-axis at A and B(0, -6) respectively. OP is the median of AB in $\triangle OAB$. Find

- (b) the coordinates of A and P,
- (c) the equation of OP.

- 17. A straight line L cuts the y-axis at A(0, 10) and the x-axis at B(5, 0).
 - (a) Find the slope of L.
 - (b) ℓ is the perpendicular bisector of AB.
 - (i) Find the equation of ℓ .
 - (ii) If ℓ cuts the y-axis at the point P, find the equation of the horizontal line passing through P.

C. Section 4.2 General Form of Equation of a Straight Lines

- 1. Please refer to the textbook P.25 28.
- 2. Video from Identity: https://youtu.be/7mr7M1zFh98

00:05 – general form

04:42 – illustrative example

For a straight line L in the general form L: Ax + By + C = 0 (where $A \neq 0$ and $B \neq 0$), we have

slope =
$$-\frac{A}{B}$$
, x-intercept = $-\frac{C}{A}$ and y-intercept = $-\frac{C}{B}$

I. Pre lesion Worksheet

1. For each of the following equations of straight lines, find the slope and the y-intercept of the straight line.

(a)
$$3x-y=0$$

(b)
$$6x+4y-7=0$$

2. Find the slopes, the x-intercepts and the y-intercepts of the following straight lines

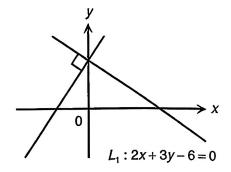
Timu u	This the stopes, the x-intercepts and the y-intercepts of the following strangul lines.								
		Slope	x-intercept	y-intercept					
(a)	$L_1: x+y-5=0$								
(b)	$L_2: y = -2x - 4$								

- 3. In each of the following,
 - (i) find the slopes of the straight lines L_1 and L_2 ,
 - (ii) determine whether L_1 and L_2 are parallel or perpendicular and put a ' \checkmark ' in the appropriate box.

		Slope of L_1	Slope of L_2	$L_1/\!/L_2$	$L_1 \perp L_2$
(a)	$L_1: x - 3y + 2 = 0$ $L_2: x - 3y + 5 = 0$				
(b)	$L_1: 5x - 2y + 1 = 0$ $L_2: 4x + 10y + 3 = 0$				
(c)	$L_1: 3x + 4y + 2 = 0$ $L_2: -6x - 8y + 3 = 0$				

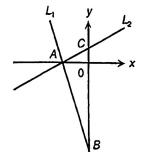
II. Teaching example and classwork

1. Find the slopes, the x-intercepts and the y-intercepts of the following straight lines.

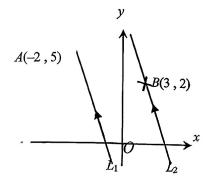

(a)
$$2x + 3y - 12 = 0$$

(b)
$$y-3=\frac{1}{2}(x-4)$$

- 2. If the two straight lines L_1 : x + 2y 5 = 0 and L_2 : 3x Cy + 8 = 0 are parallel, find
 - (a) the slope of L_1 ,
 - (b) the value of C.


3. If the two straight lines L_1 : 3x - y + 3 = 0 and L_2 : Dx + 6y - 1 = 0 are perpendicular to each other, find the value of D.

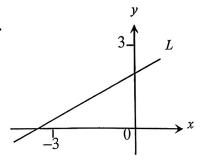
- 4. In the figure, the straight lines L_1 : 2x + 3y 6 = 0 and L_2 are perpendicular to each other, and they have the same y-intercept.
 - (a) Find the slope and the y-intercept of L_2 .
 - (b) Find the equation of L_2 in the general form.


5. Find the equation of the straight line L_1 which passes through the point B(-2, -7) and is parallel to the straight line $L_2: 5x + 3y = 0$.

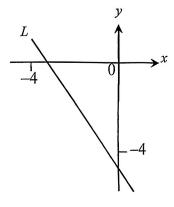
6. In the figure, the straight lines $L_1: 3x + y + 6 = 0$ and $L_2: x - 2y + k = 0$ cut the x-axis at the same point A and cut the y-axis at points B and C respectively.

- (a) Find the coordinates of A and the value of k.
- (b) Find the coordinates of B and C.
- (c) Hence, find the area of $\triangle ABC$.

- 7. In the figure, A(-2, 5) and B(3, 2) are two points. The equation of the straight line L_2 is 4x + y 8 = 0. The straight line L_1 passes through A and is parallel to L_2 .
 - (a) Find the equation of L_1 .
 - (b) If C is a point lying on L_1 such that AC = BC, find the coordinates of C.

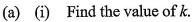


8. In the figure, the equation of the straight line L is x + ay + b = 0. Determine whether each of the following is true. Explain your answers.



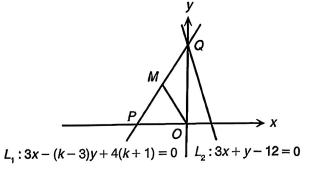
(b)
$$b > 3$$

(c)
$$b > -3a$$



- 9. In the figure, the equation of the straight line L is cx 2y + d = 0. Determine whether each of the following is true. Explain your answers.
 - (a) c > 0
 - (b) d > -8
 - (c) d > 4c

10. In the figure, the straight lines

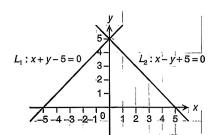

 L_1 : 3x - (k-3)y + 4(k+1) = 0 and L_2 : 3x + y - 12 = 0 cut the y-axis at the same point Q. L_1 cuts the x-axis at P. OM is the median of PQ in $\triangle POQ$.

(ii) Hence, find the x-intercept of L_1 .

(b) (i) Find the equation of OM.

(ii) Determine whether *OM* is the perpendicular bisector of *PQ*. Explain your answer.

- 11. The straight line L_1 : x + 2y 8 = 0 cuts the x-axis and the y-axis at the points P and Q respectively. The straight line L_2 is perpendicular to L_1 and intersects L_1 at P. L_2 cuts the y-axis at the point R.
 - (a) Find the coordinates of P and Q.
 - (b) Find the equation of L_2 .
 - (c) Let M be a point such that QM is a median of $\triangle PQR$. Find the area of $\triangle QRM$.


D. Section 2.4 Possible Intersection of Two Straight Lines

I. Pre lesson Worksheet

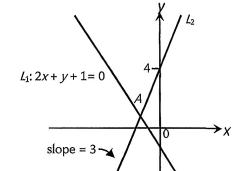
For two non-vertical straight lines $L_1: y = m_1x + c_1$ and $L_2: y = m_2x + c_2$, we have

	Case 1	Case 2	Case 3
No. of intersections	one intersection	no intersections	an infinite number of intersections
Graphical presentation	$m_1 \neq m_2$ L_1 L_2	$ \begin{array}{c c} & V \\ \hline & C_1 \\ \hline & C_2 \end{array} $ \times	$ \begin{array}{c} m_1 = m_2 \\ c_1 = c_2 \end{array} $ $ \begin{array}{c} V \\ L_1 L_2 \end{array} $
Condition	unequal slopes	equal slope and unequal y-intercepts	equal slope and equal y-intercept

1. In each of the following, find the coordinates of the intersection of the straight lines L_1 and L_2 .

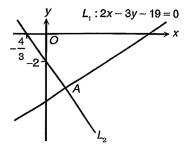
(b)
$$L_1: x-y=0, L_2: x+y-2=0$$

2. If the two straight lines L_1 : ax + by + 15 = 0 and L_2 : x - 2y - 5 = 0 have an infinite number of intersections, find the values of a and b.

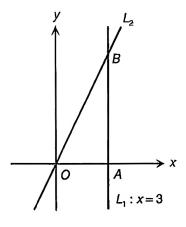

3. In each of the following, determine the number of intersections between the two straight lines L_1 and L_2 , and put a ' \checkmark ' in the appropriate box and explain your answer

		No intersections	One intersection	Infinite number of intersections	Explain your answer
(a)	L_1 : $y = 1$, L_2 : $y = -5$				
(b)	$L_1: x = 3, L_2: y = 3$				
(c)	L_1 : $y = 5x - 3$, L_2 : $y = 5x + 3$				
(d)	$L_1: y = -x + 4, L_2: y = x + 4$				
(e)	L_1 : $3x = 1$, L_2 : $x = \frac{1}{3}$				

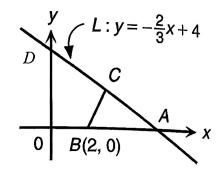
H. Teaching example and classwork


4. If the two straight lines $L_1: -3x + y + h = 0$ and $L_2: -9x + (h-3)y - 2k = 0$ are **coincident**, find the values of h and k.

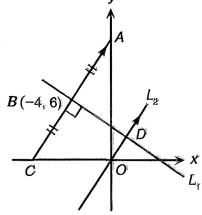
5. In the figure, the two straight lines L_1 : 2x + y + 1 = 0 and L_2 intersect at a point A. The slope and the y-intercept of L_2 are 3 and 4 respectively.

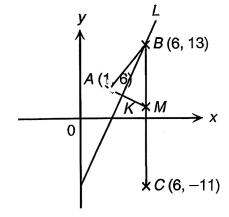

- (a) Find the equation of L_2 .
- (b) Find the coordinate of A.

- 6. In the figure, the two straight lines $L_1: 2x-3y-19=0$ and L_2 intersect at A. The x-intercept and the y-intercept of L_2 are $-\frac{4}{3}$ and
 - -2 respectively.
 - (a) Find the equation of L_2 .
 - (b) Find the coordinates of A.
 - (c) If L_3 is the straight line passing through O and A, find the equation of L_3 .

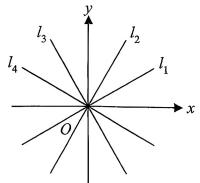


- 8. t is given that the two straight lines L_1 : 4x + y + 1 = 0 and L_2 : Ax + 2y 3 = 0 do not intersect.
 - (a) Find the value of A.
 - (b) If L is the straight line passing through the origin and perpendicular to L_2 , find the equation of L.


- 9. In the figure, the straight line L_1 : x = 3 cuts the x-axis and L_2 at A and B respectively. The area of the triangle OAB is 9 sq. units.
 - (a) Find the coordinates of A and B.
 - (b) Find the equation of L_2 .


- 10. In the figure, the straight line $L: y = -\frac{2}{3}x + 4$ cuts the x-axis and y-axis at A and D respectively. C is a point on L and B(2, 0) is a point on the x-axis.
 - (a) Find the coordinates of A.
 - **(b)** If the area of $\triangle ABC$ is 4 square units, find
 - (i) the coordinates of C,
 - (ii) AC: CD,
 - (iii) the equation of BC.

- 11. In the figure, the straight line L_1 is the perpendicular bisector of the line segment AC, and L_1 cuts AC at B(-4, 6). The straight line L_2 passes through O and is parallel to AC. L_2 intersects L_1 at a point D. If A lies on the y-axis and C lies on the x-axis, find
 - (a) the coordinates of A and C,
 - (b) the equation of BD,
 - (c) the equation of OD,
 - (d) the coordinates of D.

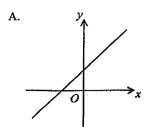

- 12. A(1,6), B(6,13) and C(6,-11) are three points on the rectangular coordinate plane and M is the mid-point of BC. A straight line L with slope 3 passing through B cuts line segment AM at K.
 - (a) Find the equations of BK and AM.
 - (b) Find the coordinates of K.
 - (c) Hence, find area of $\triangle BAK$: area of $\triangle BKM$.

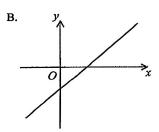
E. Past Paper (MC)

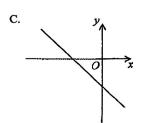
1	2	3	4	5	6	7	8
							Section of the sectio
9	10	11	12	13	14	15	16
The state of the s	- Probleman - Duna -	CONTRACTOR OF CO	THE RESERVE OF THE PROPERTY OF		200000000000000000000000000000000000000		emineroscinic entretarios de superiorios de la constantidad de la cons

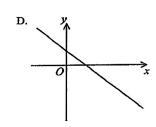
1. In the figure, the slopes of the straight lines l_1 , l_2 , l_3 and l_4 are m_1 , m_2 , m_3 and m_4 respectively. Which of the following is true?

A.
$$m_1 > m_2 > m_3 > m_4$$

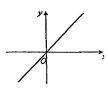

B.
$$m_2 > m_1 > m_3 > m_4$$

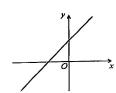

C.
$$m_1 > m_2 > m_4 > m_3$$


D.
$$m_2 > m_1 > m_4 > m_3$$

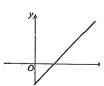

E.
$$m_4 > m_3 > m_2 > m_1$$

3. If a>0, b>0 and c<0, which of the following may represent the graph of the straight line ax + by + c = 0?

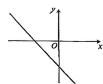


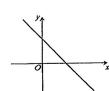

[HKCEE 04 #29]

[HKCEE 90 #29]


2. If a, b and c are all positive, which of the following may represent the graph of ax+by+c=0?

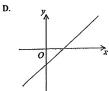
A.

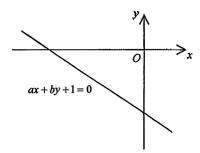



C.

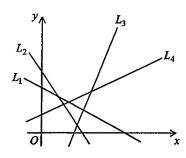
D.

E.


4. If k < 0, which of the following may represent the graph of the straight line x-y=k?

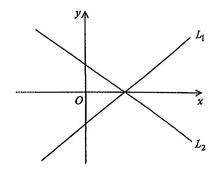

c.

[HKCEE 06 #28]


5. The figure shows the graph of the straight line ax+by+1=0. Which of the following is true?

- A. a>0 and b>0
- B. a > 0 and b < 0
- C. a < 0 and b > 0
- D. a < 0 and b < 0

[HKCEE 07 #32]


6. In the figure, L_1 , L_2 , L_3 and L_4 are straight lines. If m_1 , m_2 , m_3 and m_4 are the slopes of L_1 , L_2 , L_3 and L_4 respectively, which of the following must be true?

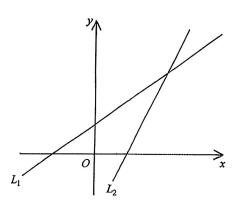
- A. $m_1 < m_2 < m_3 < m_4$
- B. $m_1 < m_2 < m_4 < m_3$
- C. $m_2 < m_1 < m_3 < m_4$
- D. $m_2 < m_1 < m_4 < m_3$

[HKCEE 08 #32]

7. In the figure, the straight line $L_1: y = ax + b$ and the straight line $L_2: y = cx + d$ intersect at a point on the positive x-axis. Which of the following must be true?

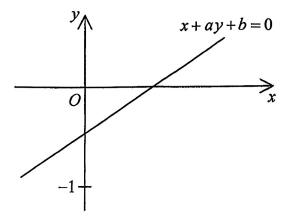
- A. ab > 0
- B. cd > 0
- C. ac = bd
- D. ad = bc

[HKCEE 09 #33]

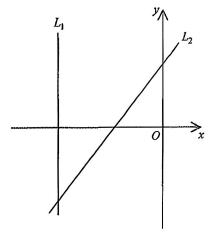

8. In the figure, the two straight lines intersect at a point on the negative *y*-axis. Which of the following must be true?

- I. ac > 0
- II. km > 0
- III. am = ck
- IV. bm = cl
 - A. I and III only
 - B. I and IV only
 - C. II and III onlyD. II and IV only

[HKCEE 10 #32]

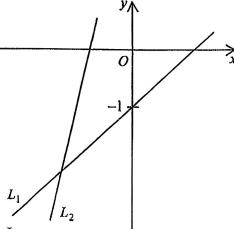

9. In the figure, the equations of the straight lines L_1 and L_2 are ax + y = b and cx + y = d respectively. Which of the following are true?

- I. a < 0
- II. a < c
- III. b > d
- IV. ad > bc
 - A. I, II and III only
 - B. I, II and IV only
 - C. I, III and IV only
 - D. II, III and IV only


[HKDSE 12 #25]

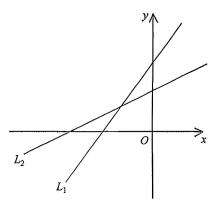
10. The figure shows the graph of the straight line x + ay + b = 0. Which of the following are true?

- I. a < 0
- II. b < 0
- III. a < b
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- [HKDSE 13 #14]


11. In the figure, the equations of the straight lines L_1 and L_2 are ax = 1 and bx + cy = 1 respectively. Which of the following are true?

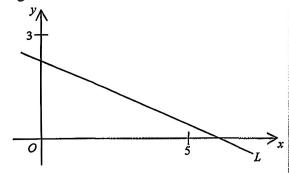
- I. a < 0
- II. a < b
- III. c > 0
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

[HKDSE 15 #25]


12. In the figure, the equations of the straight lines L_1 and L_2 are x+my=n and x+py=q respectively. Which of the following are true?

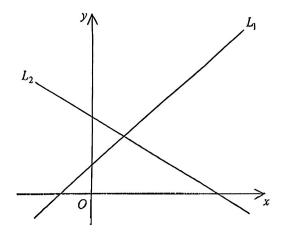
- I. m < p
- II. n > q
- III. n+m < p+q
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

[HKDSE 17 #23]


13. In the figure, the equations of the straight lines L_1 and L_2 are 3x + ay = b and cx + y = d respectively. Which of the following is/are true?

- I. ac < 3
- II. ad < b
- III. bc < 3d
- A. II only
- B. III only
- C. I and II only
- D. I and III only

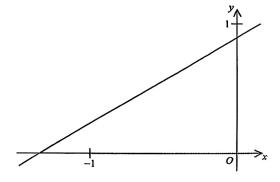
[HKDSE 18 #6]


14. In the figure, the equation of the straight line L is ax+by+15=0 . Which of the following are true?

- I. a > b
- II. a > -3
- III. b > -5
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

[HKDSE 19 #23]

15. In the figure, the equations of the straight lines L_1 and L_2 are x+ay+b=0 and bx+y+c=0 respectively. Which of the following are true?


- I. c < 0
- II. ab < 1
- III. ac < b

A. I and II only

- B. I and III only
- C. II and III only
- D. I, II and III

[HKDSE 20 #8]

16. The figure shows the graphs of the straight line mx+ny=3. Which of the following are true?

- I. m < 0
- II. n > 3
- III. m+n=0
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III