
S3 First Term Examination (2018-2019) Mathematics (2 hours)

Date: 3rd January 2019

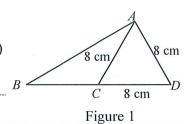
Time: 10:00 a.m. - 12:00 nn

Instructions to students:

- 1. This paper consists of THREE parts, Conventional Questions, Multiple-choice Questions and Bonus Question. There are Section A(1), Section A(2) and Section B in Conventional Questions. Section A(1) carries 33 marks, Section A(2) carries 27 marks, Section B carries 20 marks, Multiple-choice Questions carry 20 marks and Bonus Question carries 4 marks.
- 2. The maximum score of this paper is 100.
- 3. Attempt ALL questions in Conventional Questions and Multiple-choice Questions. Write your answers in the spaces provided in this Question / Answer Book.
- 4. Unless otherwise specified, show all workings clearly.
- 5. Unless otherwise specified, numerical answers should either be exact or correct to 3 significant figures.
- 6. The diagrams in this paper are not necessarily drawn to scale.

Conventional Questions Section A(1) (33 marks)

1.	Simplify $x^2 \left(\frac{x^2}{y^3}\right)^{-2}$ and express your answer with positive indices.		(3 marks)
		elva ç	
2.	Make x the subject of the formula $a = b + \frac{c}{x}$.		(3 marks)
3.	Factorize		
	(a) $x^2 + 2xy - 15y^2$,		
	(b) Hence factorize $x^2 + 2xy - 15y^2 - (x - 3y)^2$.		
			(3 marks)
		»	


- 4. (a) Solve the inequality $\frac{x+2}{2} > -3(x-4)$ and represent the solutions on a number line.
 - (b) If x is an integer, find the smallest possible value of x.

(4 marks)

5. In Figure 1, AC is a median of $\triangle ABD$. AC = CD = AD = 8 cm.

Find $\angle ABC$. (3 marks)

- 6. (a) Evaluate the expression $\frac{(8\times10^9)\times(6\times10^5)}{12\times10^6}$ without using a calculator and express the answer in scientific notation.
 - (b) Convert $FACE_{16}$ to a denary number.

(4 marks)
/

7.	It is given that 7 times x is not less than 84. If x is an integer, find the smallest possible value of					
	3x + 4.	(3 marks)				
8.	Figure 2 shows an inverted right circular cone with base radio					
	the curved surface area of the circular cone.	(4 marks)				
		12 cm				
		Figure 2				
		un accesso with a transition of the				
9.	Figure 3 shows a hemisphere of diameter 10 cm.					
	Find the volume of the hemisphere in terms of π .	(3 marks)				
		10 cm				
		Figure 3				

- 10. Figure 4 shows a right triangular prism ABCDEF.
 - (a) Write down the projection of AD on plane ABFE.
 - (b) Name the angle between AD and plane BCDF.
 - (c) Name the angle between planes ABD and ABFE.

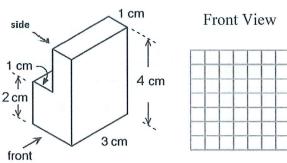
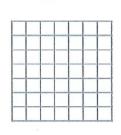

E

Figure 4



Section A(2) (27 marks)

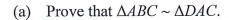
11. By using Figure 5, draw the orthographic views for the following solid on grid paper, each grid represents dimension 1 cm x 1 cm. (3 marks)

Top View

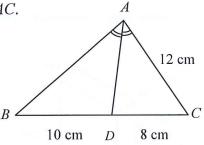
(3 marks)

				Г
	Г			
_				-

Side View


12.	The volume of a sphere is 36π cm ³ . Find the radius and (Express your answers in terms of π if necessary.)	the	surface	area	of	sphere.
				·		

13.	If 5^{x+1}	$1 + 5^{x}$	$^{1}-26=0$	find the	value of x .
-----	--------------	-------------	-------------	----------	----------------


(4 marks)

| Market | 121 | 121 A searced

14. In Figure 6, D is a point on BC. AD is the angle bisector of $\angle BAC$. AC = 12 cm, BD = 10 cm and DC = 8 cm.

(b) Find AD.

(5 marks)

Figure 6

	cub	oid <i>Q</i> is 9 : 25.	
	(a)	Find the ratio of the volume of cuboid P to that of cuboid Q	<i>Q</i> .
	(b)	Cuboids P and Q are melted together and then recast to cub	poid R. It is known that the
		volume of cuboid R is 380 cm ³ . Find the volume of cuboid	<i>P</i> .
			(5 marks)
16.	Fig	ure 7 shows a right frustum <i>PQRSTUVW</i> . The upper base an	nd the lower base are rectangles
		dimensions 12 cm \times 9 cm and 16 cm \times 12 cm respectively	
		cm. Find the volume of the frustum.	(6 marks)
			P 12 cm S
			9 cm / R
			/ i 20 cm
			T_{\perp}
			U 12 cm
			16 cm
			Figure 7

15. Consider two similar cuboids P and Q. The ratio of the total surface area of cuboid P to that of

Section B (20 marks)

17. In Figure 8, ADEC and BFC are straight lines. BD is the altitude of $\triangle ABC$ on AC. EF is the perpendicular bisector of AC. (a) Find BD. В (b) (i) Prove that $\triangle CEF \sim \triangle CBA$. 120 _ (ii) Find EF. 35 (c) Sam claims that $\angle ABD = \angle ACB$. Do you agree with him? Ε Figure 8 Explain your answer. (12 marks)

S3 Mathematics	Page 9 of 15 pag
	·

- 18. Figure 9 shows a solid which is formed by combining a right circular cone and a right cylinder. The base radii of the cone and the cylinder are both 6 cm. The height of the cylinder is 7 cm and the slant height of the cone is l cm. It is given that the total surface area of the solid is at least 180π cm².
 - (a) Find the range of values of l.
 - (b) Using the result of (a), find the minimum volume of the solid. (Leave the answer in terms of π .)

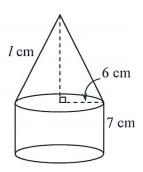
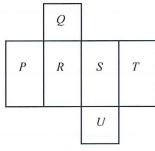


Figure 9

(8 marks)


S3 Mathematics	Page 11 of 15 page
	4175-4

Multiple-choice Questions (20 marks)

Write down the correct answers into the boxes.

19.	20.	21.	22.	23.	24.	25.	26.	27.	28.
				=					

- 19. If a > 0 > b and k is a negative odd integer, which of the following must be true?
 - I. $\frac{a^2}{k} > \frac{b^2}{k}$
 - II. a+k>b+k
 - III. $a^k > b^k$
 - A. I and II only
 - B. II and III only
 - C. I and III only
 - D. I, II and III
- 20. In each of the following, the lengths of three line segments are shown. Which set of line segments cannot form a triangle?
 - I. 25, 11, 12
 - II. 33, 13, 21
 - III. 35, 16, 18
 - A. II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 21. In Figure 10, the net is folded into a cuboid. Which of the following pairs of letters shown on the faces are opposite to each other?
 - A. P and Q
 - B. Q and R
 - C. U and T
 - D. R and T

- 22. $4^{2m} \cdot 32^n =$
 - A. 2^{4m+5n} .
 - B. 16^{2m+2n} .
 - C. 32^{2m+n} .
 - D. 128^{2m+n} .
- 23. Figure 11 shows a solid made up of 6 identical cubes.

Which of the following must be true?

- I. The solid has 2 planes of reflection.
- II. The solid has 1 axis of 2-fold rotational symmetry.
- III. The solid has 1 axis of 4-fold rotational symmetry.

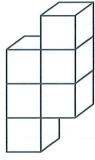


Figure 11

- A. I only
- B. II only
- C. I and III only
- D. II and III only

24.
$$2^{10} + 5 \times 2^7 + 7 \times 2^4 - 2^4 =$$

- A. 11011100000₂.
- B. 11001110000₂.
- C. 11011100001₂.
- D. 11010110111₂.
- 25. In Figure 12, ABCD is a tetrahedron with $AB \perp BD$, $AB \perp BC$ and AC = AD. M and N are midpoints of AB and CD respectively.

Which of the following is the angle between planes ABC and ADB?

- A. ∠ANB
- B. ∠CMD
- C. ∠CBD
- D. $\angle CAD$

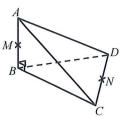


Figure 12

26. In Figure 13, AEB, ADC and BFC are straight lines. CDEF is a parallelogram and

AE : EB = 4 : 7. If the area of CDEF is 84 cm², then the area of AEFC is

- A. 97.5 cm^2 .
- B. 108 cm^2 .
- C. 157.5 cm^2 .
- D. 181.5 cm².

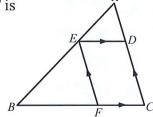


Figure 13

27. In Figure 14, the sector *AOB* (*O* is the centre of the sector) is folded to form a paper cup in the shape of a circular cone by joining *OA* and *OB* together. Find the capacity of the cup formed.

A.
$$\frac{9\pi\sqrt{15}}{8}$$
 cm³

- B. $9\pi \text{ cm}^3$
- C. $\frac{27\pi\sqrt{15}}{8}$ cm³
- D. $72\pi \text{ cm}^3$

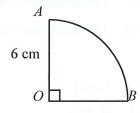


Figure 14

- 28. In Figure 15, AED is a straight line and E is the centroid of $\triangle ABC$. It is given that BE = CE. Which of the following must be true?
 - I. The in-centre of $\triangle ABC$ lies on AD.
 - II. The circumcentre of $\triangle ABC$ lies on AD.
 - III. $\triangle ABC$ is an isosceles triangle.

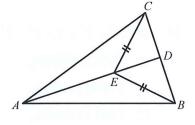


Figure 15

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

Bonus Question (4 marks)

29.	$\triangle OPQ$ is an obtuse-angled triangle. Denote the in-centre and the circumcentre of $\triangle OPQ$ by I								
	and J respectively. It is given that P , I and J are collinear. Prove that $OP = PQ$.	(4 marks)							

المرين المرصوبا المرضي