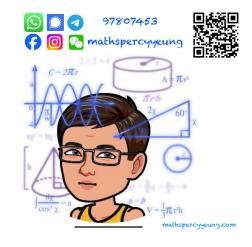


2018 - 2019 Form 4 2nd Term Uniform Test


MATHEMATICS Extended Part Module 2 (Algebra and Calculus)

Question-Answer Book

27th March, 2019. (Wednesday) 9:30 – 10:30 a.m. (1 hour) This paper must be answered in English.

INSTRUCTIONS

- 1. After the announcement of the start of the examination, you should first write your name, class and class number in the spaces provided on this cover.
- 2. Answer ALL questions. Write your answers in the spaces provided in this Question-Answer Book.
- 3. Supplementary answer sheets will be supplied on request. Write your name, class, class number and mark the question number box on each sheet.
- 4. Unless otherwise specified, all working must be clearly shown.
- 5. Unless otherwise specified, numerical answers must be exact.

Grand Total / 42

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$2 \sin A \cos B = \sin (A + B) + \sin (A - B)$$

$$2\cos A\cos B = \cos (A+B) + \cos (A-B)$$

$$2 \sin A \sin B = \cos (A - B) - \cos (A + B)$$

$$\sin A + \sin B = 2\sin \frac{A+B}{2}\cos \frac{A-B}{2}$$

$$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

1. Prove that
$$1 + \cos(\pi - 2\theta) - 2\cos^4\left(\frac{\pi}{2} + \theta\right) = \frac{\sin^2 2\theta}{2}$$
. (4 marks)

Answers written in the margins will not be marked.

Answers written in the margins will not be marked

2.	(a)	Prove that $\frac{\cos(A+B) + \cos A}{\sin(A+B) - \sin A} = \cot \frac{B}{2}$.	(3 marks)
		$\sin 20^{\circ} + \cos 10^{\circ}$	(3 marks)

-	Answers written in the margins will not be marked	HIGH CC.
	٥	3
	1	
-	_	4
-	-	٦
•	137	
	7117	1
	7767	3
	7	7
-	ž	į
	2	=
	4	3
	1X/T1	111
	2	2
	7 11 11 11	2
		7

Using mathematical induction, prove that $\cos\theta + \cos 3\theta + \cos 5\theta + \cdots + \cos (2n-1)\theta = \frac{\sin 2n\theta}{2\sin\theta}$, where $\sin\theta \neq 0$, for all positive integers n . It is given that $\sin\frac{\pi}{12} = \frac{\sqrt{6}-\sqrt{2}}{4}$. Using (a), evaluate $\sum_{k=1}^{404} \cos\frac{(2k-1)\pi}{12}$.	(6 marks) (3 marks)
	7
	Answers written in the margins will not be marked.
	ers written in the man
	Answ

Answers written in the margins will not be marked.	Answers written in the margins will not be marked.

4.	Find	the	fol	lowing	lımı	S

(a)
$$\lim_{x\to 5} \frac{x-5}{\sqrt{x+20}-5}$$

(3 marks) **(b)**
$$\lim_{x\to 0} \frac{\cos^2 2x + 2x^2 - 1}{1 + \sin^2 3x - \cos^2 3x}$$
 (3 marks)

(c)
$$\lim_{x\to\infty} \left(\sqrt{4x^2+3x}-2x\right)$$

(d)
$$\lim_{x \to \infty} \left(\frac{x^2 - x - 6}{x^2 + 7x - 8} \right)^x$$

(e)
$$\lim_{x\to 0} \cot 2x \left(e^{3x} - 1\right)$$

f)
$$\lim_{x\to 0} \frac{e^{3x} - e^{2x} - e^x + e^x}{x^2}$$

Answers written in the margins will not be marked.

Answers written in the margins will not be marked.

Answers written in the margins will not be marked.	Answers written in the margins will not be marked.

5.	(a) (b)	Prove the identity $\cot x = \frac{\sin 2x}{1 - \cos 2x}$ Using (a) , prove the identity $\cot y = \frac{\sin 2x}{1 - \cos 2x}$	$\frac{\sin 8y}{1-\cos 8y}$	$\cdot \frac{1 - \cos 4y}{\cos 4y}$	$\frac{\cos 2y}{1-\cos 2y} .$	(2 marks) (3 marks)
			OF PAPE	up.		