


## MATHEMATICS Extended Part Module 2 (Algebra and Calculus) Question—Answer Book

14<sup>th</sup> January, 2025 8:15 am – 10:15 am (2 hours) This paper must be answered in English

### **INSTRUCTIONS**

- 1. Write your name, class and class number in the spaces provided on this cover.
- 2. This paper consists of TWO sections, A and B.
- 3. Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- 4. Unless otherwise specified, all working must be clearly shown.
- 5. Unless otherwise specified, numerical answers must be exact.
- 6. The diagrams in this paper are not necessarily drawn to scale.



| Section    | Marks |  |
|------------|-------|--|
| A Total    | / 43  |  |
| B Total    | / 37  |  |
| TOTAL      | / 80  |  |
| <b>E</b> 1 | %     |  |

## FORMULAS FOR REFERENCE

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$2 \sin A \cos B = \sin (A + B) + \sin (A - B)$$

$$2 \cos A \cos B = \cos (A + B) + \cos (A - B)$$

$$2 \sin A \sin B = \cos (A - B) - \cos (A + B)$$

$$\cos A - \cos B = -2 \sin \frac{A + B}{2} \sin \frac{A - B}{2}$$

$$\cos A - \cos B = -2 \sin \frac{A + B}{2} \sin \frac{A - B}{2}$$

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Answers written in the margins will not be marked

## Section A (43 marks)

| Find $\frac{d}{dx}\left(x^2 + \frac{1}{x}\right)$ | from first principles. | (4 marks) |
|---------------------------------------------------|------------------------|-----------|
|                                                   |                        |           |
|                                                   |                        |           |
|                                                   |                        |           |
|                                                   |                        |           |
|                                                   |                        |           |
|                                                   |                        |           |
|                                                   |                        |           |
|                                                   |                        |           |
|                                                   |                        |           |
|                                                   |                        |           |
|                                                   |                        |           |
|                                                   |                        |           |
|                                                   |                        |           |
|                                                   |                        |           |

| 2. | (a) Evaluate $\lim_{x \to \frac{\pi}{2}} \frac{x - \frac{\pi}{2}}{\cos x}$ .<br>(b) (i) Expand $(1 + mx)^n - (1 + nx)^m$ in ascending powers of x as far as the term in |           |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|    | (b) (i) Expand $(1+mx)^n - (1+nx)^m$ in ascending powers of x as far as the term in                                                                                     | $n x^3$ . |
|    | (ii) Hence, evaluate $\lim_{x\to 0} \frac{(1+mx)^n - (1+nx)^m}{x^2}$ , where $m, n \ge 2$ .                                                                             |           |
|    |                                                                                                                                                                         | (6 marks) |
|    |                                                                                                                                                                         |           |
|    |                                                                                                                                                                         |           |
|    |                                                                                                                                                                         |           |
|    |                                                                                                                                                                         |           |
|    |                                                                                                                                                                         |           |
|    |                                                                                                                                                                         |           |
|    |                                                                                                                                                                         |           |
|    |                                                                                                                                                                         |           |
|    |                                                                                                                                                                         |           |
|    |                                                                                                                                                                         |           |
|    |                                                                                                                                                                         |           |
|    |                                                                                                                                                                         |           |
|    |                                                                                                                                                                         |           |
|    |                                                                                                                                                                         | ,         |
|    |                                                                                                                                                                         |           |
|    |                                                                                                                                                                         | ,         |
|    |                                                                                                                                                                         |           |
|    |                                                                                                                                                                         |           |
|    |                                                                                                                                                                         |           |
|    |                                                                                                                                                                         |           |

| 3. | Find the following.                |           |
|----|------------------------------------|-----------|
|    | (a) $\int \sqrt{1-4x^2} \ dx$ .    |           |
|    | (b) $\int x^3 \sin(x^2 + 1)  dx$ . |           |
|    |                                    |           |
|    |                                    | (7 marks) |
|    |                                    |           |
|    |                                    |           |
|    |                                    |           |
|    |                                    |           |
|    |                                    |           |
|    |                                    | -         |
|    |                                    |           |
|    |                                    |           |
|    |                                    |           |
|    |                                    |           |
|    |                                    |           |
|    |                                    |           |
|    |                                    |           |
|    |                                    |           |
|    |                                    |           |
|    |                                    |           |
|    |                                    |           |
|    |                                    |           |
|    |                                    |           |
|    |                                    |           |
|    |                                    |           |
|    |                                    |           |
|    |                                    |           |
|    |                                    |           |
|    |                                    |           |
|    |                                    |           |
|    |                                    |           |
|    |                                    |           |

| - |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
| - |  |
|   |  |
| - |  |
| - |  |
|   |  |
| - |  |
|   |  |
|   |  |
|   |  |

| (a) | Using mathematical induction, prove that $\sum_{k=1}^{n} 7^{k-1} = \frac{7^{n} - 1}{6}$ for all positive integers $n$ . |
|-----|-------------------------------------------------------------------------------------------------------------------------|
| (b) | Using (a), express $\sum_{k=m}^{2m} 7^{k+1}$ in terms of m, where m is the positive integer.                            |
|     | (7 ma                                                                                                                   |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |
|     |                                                                                                                         |

| 5. | (a) | Let <i>n</i> be a positive integer and $x \in \left(0, \frac{\pi}{n+1}\right)$ .                                                                        |
|----|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |     | Show that $\cot kx - \cot(k+1)x = \frac{\sin x}{\sin kx \sin(k+1)x}$ for all $k = 1, 2, 3,, n$ .                                                        |
|    | (b) | Hence, deduce that $\frac{1}{\sin x \sin 2x} + \frac{1}{\sin 2x \sin 3x} + \dots + \frac{1}{\sin nx \sin(n+1)x} = \frac{\sin nx}{\sin^2 x \sin(n+1)x}.$ |
|    |     | (6 marks)                                                                                                                                               |
|    |     |                                                                                                                                                         |
|    |     |                                                                                                                                                         |
|    |     |                                                                                                                                                         |
|    |     |                                                                                                                                                         |
|    |     |                                                                                                                                                         |
|    |     |                                                                                                                                                         |
|    |     |                                                                                                                                                         |
|    |     |                                                                                                                                                         |
|    |     |                                                                                                                                                         |
|    |     |                                                                                                                                                         |
|    |     |                                                                                                                                                         |
|    |     |                                                                                                                                                         |
|    |     |                                                                                                                                                         |
|    |     |                                                                                                                                                         |
|    |     |                                                                                                                                                         |

|      |      | , |
|------|------|---|
|      |      |   |
|      | <br> |   |
| <br> | <br> |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
| <br> |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      | , |
|      |      |   |
|      |      |   |
|      |      |   |

| 6. | An inverted vessel is in the shape of a right circular cone. The base radius and the height of the             |
|----|----------------------------------------------------------------------------------------------------------------|
|    | vessel are 6 cm and 15 cm respectively. Let $V \text{ cm}^3$ and $h \text{ cm}$ be the volume and the depth of |
|    | the water in the vessel respectively.                                                                          |
|    | (a) Express $V$ in terms of $h$ .                                                                              |
|    | (b) Water has been leaking out of the vessel through the apex for $t$ min. The depth of the                    |
|    | water is given by $h = \frac{15}{2^{\frac{t}{4}}}$ .                                                           |
|    | $2e^{\frac{t}{4}}+1$                                                                                           |
|    | Find the rate of change of volume of the water in the vessel at $t = 4$ .                                      |
|    | (Give your answer correct to 2 decimal places.)                                                                |
|    | (5 marks)                                                                                                      |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |
|    |                                                                                                                |

7. In Figure 1, the shaded region is bounded by the two curves  $C_1: y^2 = x - 1$ ,  $C_2: y^2 = -2x + 14$  and the line y = 1.  $C_1$  and  $C_2$  intersect at A in quadrant I. The line y = 1 intersects  $C_1$  and  $C_2$  at B and C respectively.

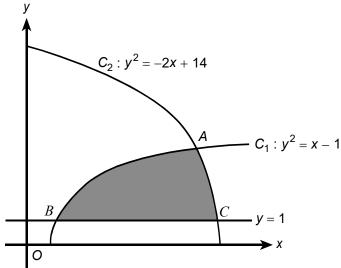



Figure 1

- (a) Find the coordinates of A, B and C.
- (b) If the region is revolved about the *x*-axis, find the volume of the solid generated.

Answers written in the margins will not be marked

(8 marks)

| , |
|---|
|   |
|   |
|   |

| <b>Section</b> | В | (37 | marks)  |
|----------------|---|-----|---------|
| Section        | D | (3/ | mai ks) |

- 8. Let  $f(x) = \frac{x^2 x 6}{x + 6}$  where  $x \neq -6$ .
  - (a) Find f'(x) and f''(x). (2 marks)
  - (b) Solve each of the following inequalities:
    - (i) f'(x) > 0,
    - (ii) f''(x) < 0.

(3 marks)

(c) Find the relative maximum point(s) and minimum point(s) of the graph of y = f(x).

(2 marks)

- (d) Find the asymptote(s) of the graph of y = f(x). (2 marks)
- (e) Sketch the graph of y = f(x). (2 marks)
- (f) Find the area of the region bounded by the graph of y = f(x) and the x-axis. (3 marks)

|  | <u>-</u> |
|--|----------|
|  |          |
|  |          |
|  |          |

| *************************************** |   |
|-----------------------------------------|---|
|                                         |   |
|                                         |   |
|                                         |   |
|                                         |   |
|                                         |   |
|                                         |   |
|                                         |   |
|                                         |   |
|                                         |   |
|                                         |   |
|                                         |   |
|                                         |   |
|                                         |   |
| *************************************** |   |
|                                         |   |
|                                         |   |
|                                         |   |
|                                         |   |
|                                         | , |
|                                         |   |
|                                         |   |
|                                         |   |
|                                         |   |
|                                         |   |
|                                         |   |

| • |
|---|
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |

9. In Figure 2, a right circular cone is circumscribed to a sphere of radius 3 cm, with the base of the cone touching the sphere. Let  $\theta$  be the semi-vertical angle of the cone and V cm<sup>3</sup> be the volume of the cone.

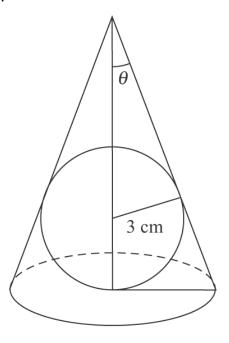



Figure 2

(a) Prove that  $V = 9\pi (1 + \csc \theta)^3 \tan^2 \theta$ . (3 marks)

Answers written in the margins will not be marked

(9 marks)

- (b) (i) Find  $\frac{dV}{d\theta}$ .
  - (ii) Find the range of values of  $\theta$  such that V is decreasing.
  - (iii) Hence, find the minimum volume of the cone.

|  | , |
|--|---|
|  |   |
|  |   |
|  | , |
|  |   |
|  |   |
|  |   |
|  |   |

|  | - |
|--|---|
|  |   |
|  |   |
|  |   |
|  |   |

|  | ***  |
|--|------|
|  |      |
|  | -    |
|  | ***  |
|  | ***  |
|  | **1  |
|  |      |
|  |      |
|  | ж.   |
|  | H.3  |
|  |      |
|  |      |
|  |      |
|  | -1   |
|  | ***  |
|  |      |
|  | 1    |
|  |      |
|  | **   |
|  | ···a |
|  |      |
|  | ***  |
|  |      |
|  | •    |
|  | ***  |
|  | ***  |
|  |      |
|  |      |
|  |      |
|  | *1   |
|  | era. |
|  |      |
|  |      |
|  |      |
|  | **   |
|  |      |
|  | Wa.  |

| -  |  |
|----|--|
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |
| -  |  |
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |
| -  |  |
| ** |  |
|    |  |
|    |  |
|    |  |
| ** |  |
|    |  |
|    |  |

|     | Let $a > 0$ and $f(x)$ be a continuous function.<br>Prove that $\int_0^a f(x)dx = \int_0^a f(a-x)dx$ .               |        |
|-----|----------------------------------------------------------------------------------------------------------------------|--------|
|     | Hence, prove that $\int_0^a f(x)dx = \frac{1}{2} \int_0^a \left[ f(x) + f(a - x) \right] dx.$                        | (3 mai |
| (b) | Show that $\int_0^1 \frac{dx}{x^2 - x + 1} = \frac{2\sqrt{3} \pi}{9}$ .                                              | (4 mai |
| (c) | Using (a) and (b), or otherwise, evaluate $\int_0^1 \frac{dx}{\left(x^2 - x + 1\right)\left(e^{2x - 1} + 1\right)}.$ | (4 mai |
|     |                                                                                                                      |        |
|     |                                                                                                                      |        |
|     |                                                                                                                      |        |
|     |                                                                                                                      |        |
|     |                                                                                                                      |        |
|     |                                                                                                                      |        |
|     |                                                                                                                      |        |
|     |                                                                                                                      |        |
|     |                                                                                                                      |        |
|     |                                                                                                                      |        |
|     |                                                                                                                      |        |
|     |                                                                                                                      |        |

|      |      | , |
|------|------|---|
|      |      |   |
|      | <br> |   |
| <br> | <br> |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
| <br> |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      |   |
|      |      | , |
|      |      |   |
|      |      |   |
|      |      |   |

| END OF PAPER |
|--------------|
|              |