


MATHEMATICS Extended Part Module 2 (Algebra and Calculus) Question—Answer Book

13th January, 2025 8:15 am – 9:30 am (1 hour 15 minutes) This paper must be answered in English

INSTRUCTIONS

- 1. Write your name, class and class number in the spaces provided on this cover.
- 2. This paper consists of TWO sections, A and B.
- 3. Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- 4. Unless otherwise specified, all working must be clearly shown.
- 5. Unless otherwise specified, numerical answers must be exact.
- 6. The diagrams in this paper are not necessarily drawn to scale.

Section	Marks
A	/ 31
В	/ 19
тоты	/ 50
TOTAL	%

FORMULAS FOR REFERENCE

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$2\sin A \cos B = \sin(A + B) + \sin(A - B)$$

$$2\cos A \cos B = \cos(A + B) + \cos(A - B)$$

$$2\sin A \sin B = \cos(A - B) - \cos(A + B)$$

$$\cos A + \cos B = 2\cos \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\cos A + \cos B = 2\cos \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\cos A + \cos B = 2\cos \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\cos A - \cos B = -2\sin \frac{A + B}{2} \sin \frac{A - B}{2}$$

Section A (31 marks)

1. The coefficient of x^2 in the expansion of $(1-3x)^n$ is 135, where n is a positive integer.

Answers written in the margins will not be marked.

- (a) Find the value of n.
- **(b)** Find the coefficient of x^3 in the expansion of $(1-3x)^n$.

(4 marks)

2.		nsion of $(1+ax)^2(1+2x)^n$, Find the values of n .	the	coefficients	of x	and	x^2	are	16	and	109
	1									(5 ma	rks)

Using mathematical induction	, prove that	$\sum_{k=1}^{n} (5k^4 + k^2) = \frac{n}{n}$	$\frac{(n+1)(2n+1)}{2}$	for all positi
ntegers n .				
				(5 mark

	(3π)
_	Determine whether $f(x) = \frac{\sin\left(\frac{3\pi}{2} + x\right)}{2x^2 + 3}$ is an odd function, an even function or neither of
1 .	Determine whether $f(x) = \frac{1}{2x^2 + 3}$ is an odd function, an even function or neither of
	them.
	(3 marks)
	•

Prove that					(3 m
					(
-					
-					
Simplify	sin (180° – θ) se	$cc(270^{\circ}-\theta)+cos(3\theta)$	60° – θ) csc (270° –	θ) .	
Simplify	sin (180° – θ) se	$cc(270^{\circ}-\theta)+cos(3\theta)$	60° – θ) csc (270° –	θ) .	(3 n
Simplify :	sin (180° – θ) se	$cc(270^{\circ}-\theta)+cos(3\theta)$	60° – θ) csc (270° –	θ) .	(3 n
Simplify :	sin (180° – θ) se	$c(270^{\circ}-\theta)+cos(3\theta)$	60° – θ) csc (270° –	θ) .	(3 n
Simplify :	sin (180° – θ) se	$cc(270^{\circ}-\theta)+cos(3\theta)$	60° – θ) csc(270° –	θ) .	(3 n
Simplify	sin (180° – θ) se	$cc(270^{\circ}-\theta)+cos(3\theta)$	60° – θ) csc (270° –	θ) .	(3 m
Simplify	sin (180° – θ) se	$cc(270^{\circ}-\theta)+cos(3\theta)$	60° – θ) csc (270° –	θ) .	(3 n
Simplify	sin (180° – θ) se	$cc(270^{\circ}-\theta)+cos(30^{\circ})$	60° – θ) csc(270° –	θ) .	(3 m
Simplify	sin (180° – θ) se	$cc(270^{\circ}-\theta)+cos(3\theta)$	60° – θ) csc (270° –	θ) .	(3 m
Simplify	sin (180° – θ) se	$cc(270^{\circ}-\theta)+cos(3\theta)$	60° – θ) csc (270° –	θ) .	(3 m
Simplify	sin (180° – θ) se	$cc(270^{\circ}-\theta)+cos(3\theta)$	60° – θ) csc (270° –	θ) .	(3 m
Simplify	sin (180° – θ) se	$cc(270^{\circ}-\theta)+cos(3\theta)$	60° – θ) csc (270° –	θ) .	(3 m
Simplify	sin (180° – θ) se	$cc(270^{\circ}-\theta)+cos(3\theta)$	60° – θ) csc (270° –	θ) .	(3 m
Simplify	sin (180° – θ) se	$cc(270^{\circ}-\theta)+cos(3\theta)$	60° – θ) csc (270° –	θ) .	(3 m
Simplify	sin (180° – θ) se	$cc(270^{\circ}-\theta)+cos(3\theta)$	60° – θ) csc (270° –	θ) .	(3 m
Simplify	sin (180° – θ) se	$cc(270^{\circ}-\theta)+cos(3\theta)$	60° – θ) csc (270° –	θ) .	(3 m

7.	Evaluate the following lim (a) $\lim_{x \to 5} \frac{x^2 - 25}{5x - 25}$	its. (b) $\lim_{x \to 0} \frac{e^{4x} - 1}{\sin \frac{x}{2}}$	$(c) \lim_{x \to \infty} \frac{1}{3x - \sqrt{9x^2 + x}}$
		2	(8 marks)

Section	R	(19	marks)
Section.	D (コラ	marks

8. (a) Prove that $\cos 3x = 4 \cos^3 x - 3 \cos x$.

(3 marks)

(b) Prove that $\frac{\cos 3\left(x - \frac{\pi}{4}\right)}{\cos\left(x - \frac{\pi}{4}\right)} = \frac{\sin 3x - \cos 3x}{\sin x + \cos x}.$

(2 marks)

(c) Solve the equation $\frac{\sin 3x - \cos 3x}{\sin x + \cos x} = -2$, where $\frac{\pi}{2} < x < \frac{3\pi}{4}$.

(4 marks)

-		
-		

 •
_
_
•
_
_
_
_
 •

- **9.** (a) (i) Show that $a^n + b^n = (a+b)(a^{n-1} + b^{n-1}) ab(a^{n-2} + b^{n-2})$, where a and b are real numbers.
 - (ii) Let $x + \frac{1}{x} = 2\cos\theta$, where $\theta \neq k\pi$ and x is a non-zero real number. Suppose $x^k + \frac{1}{x^k} = 2\cos k\theta$ and $x^{k+1} + \frac{1}{x^{k+1}} = 2\cos(k+1)\theta$ for a positive integer k. Using (i), show that $x^{k+2} + \frac{1}{x^{k+2}} = 2\cos(k+2)\theta$.

(4 marks)

(b) It is given that $x^n + \frac{1}{x^n} = 2\cos n\theta$. Prove, by mathematical induction, that $\left(x + x^3 + x^5 + \dots + x^{2n-1}\right) + \left(\frac{1}{x} + \frac{1}{x^3} + \frac{1}{x^5} + \dots + \frac{1}{x^{2n-1}}\right) = \frac{\sin 2n\theta}{\sin \theta}$

for all positive integers n, where $\theta \neq k\pi$.

(6 marks)

-	

 •
_
_
•
_
_
_
_
 •

·
END OF PAPER