

MATHEMATICS Extended Part Module 2 (Algebra and Calculus) Question—Answer Book

15th January, 2024 8:15 am – 9:30 am (1 hour 15 minutes) This paper must be answered in English

INSTRUCTIONS

- 1. Write your name, class and class number in the spaces provided on this cover.
- 2. This paper consists of TWO sections, A and B.
- 3. Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- 4. Unless otherwise specified, all working must be clearly shown.
- 5. Unless otherwise specified, numerical answers must be exact.
- 6. The diagrams in this paper are not necessarily drawn to scale.

Section	Marks
A Total	/38
B Total	/12
TOTAL	/50

FORMULAS FOR REFERENCE

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$2 \sin A \cos B = \sin (A + B) + \sin (A - B)$$

$$2 \cos A \cos B = \cos (A + B) + \cos (A - B)$$

$$2 \sin A \sin B = \cos (A - B) - \cos (A + B)$$

$$\sin A + \sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

Answers written in the margins will not be marked

(4 marks)

Section A (38 marks)

- 1. (a) Rationalize the denominator of $\frac{1}{\sqrt{x} + \sqrt{x-1}}$.
 - (b) Using the result of (a), evaluate

$$\frac{5}{\sqrt{300} + \sqrt{297}} + \frac{5}{\sqrt{297} + \sqrt{294}} + \frac{5}{\sqrt{294} + \sqrt{291}} + \dots + \frac{5}{\sqrt{6} + \sqrt{3}}.$$

e value of a if $\lambda_7 = 4\lambda_1$	0.	(5

Find the term in x^2 in the expansion of $(1+x)^7 \left(1-\frac{2}{x}\right)^3$.	(4

(Evaluate (a) $\lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9}$, (b) $\lim_{x \to \infty} \frac{x^3 + 5x - 1}{3x^3 - 7x^2 + 6}$, (c) $\lim_{x \to 0} \frac{\sin^3 4x}{x \sin^2 5x}$.	(8 marks)

5.	(a)	Using mathematical induction, prove that $\sum_{r=1}^{n} r^{3} = \frac{n^{2}(n+1)^{2}}{4}$ for all positive integration for all positive integrals.	egers n.
	(b)	Hence, show that $1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \dots + (n-1)n(n+1) = \frac{(n-1)n(n+1)(n+2)}{4}$	for all
		positive integers n greater than 1.	
		(8	marks)

Simplify $[\sec(\pi+\theta)+1]\left[\csc\left(\frac{\pi}{2}+\theta\right)+1\right]$.	(3

7. (a) (b) (c)	Prove that $x + 1$ is a factor of $4x^3 + 2x^2 - 3x - 1$. Prove that $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$. Using the results of (a) and (b), prove that $\cos \frac{3\pi}{5} = \frac{1 - \sqrt{5}}{4}$. (6 marks)

Section	В	(12)	marks))
Section	•	(1 2	mans	,

- 8. Let $m = \frac{\sin \beta}{\sin(2\alpha + \beta)}$.
 - (a) Prove that $1+m = \frac{2\sin(\alpha+\beta)\cos\alpha}{\sin(2\alpha+\beta)}$.

(2 marks)

(b) Prove that $(1+m)\tan \alpha = (1-m)\tan(\alpha+\beta)$.

(3 marks)

Answers written in the margins will not be marked

- (c) (i) If $\sin(2x + \frac{\pi}{4}) = -\frac{\sqrt{2}}{10}$, by using the result of (b), prove that $2\tan^2 x 5\tan x 3 = 0$.
 - (ii) Solve $\sin(2x + \frac{\pi}{4}) = -\frac{\sqrt{2}}{10}$ where $\frac{\pi}{2} < x < \frac{3\pi}{2}$.

(Give your answers correct to 3 significant figures.) (7 marks)

	OF DADED
END	OF PAPER