

2023 – 2024 S5 Second Term Examination

MATHEMATICS Compulsory Part PAPER 2

14th June, 2024 11:00 am – 12:15 pm (1 hour 15 minutes) Total Marks: 45

INSTRUCTIONS

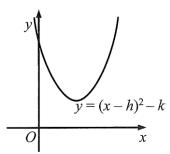
- 1. Read carefully the instructions on the Answer Sheet. After the announcement of the start of the examination, you should insert the information required in the spaces provided.
- 2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS**. You should use an HB pencil to mark all your answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

There are 30 questions in Section A and 15 questions in Section B.

The diagrams in this paper are not necessarily drawn to scale.

Choose the best answer for each question.

Section A

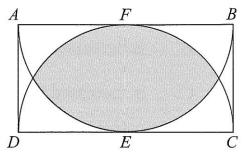

1. Make a the subject of the formula $\frac{r}{a} - \frac{s}{b} = 5.$

$$\frac{a}{a} - \frac{a}{b} =$$

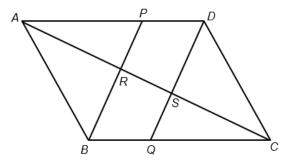
- A. $a = \frac{rb}{5b+s}$.
- B. $a = \frac{5+s}{rb}$.
- C. $a = \frac{5b+s}{rb}$.
- D. $a = \frac{rb}{5b-s}$.
- $2. \quad \frac{1}{5-2x} \frac{2}{5+2x} =$
 - $A. \quad \frac{6x+5}{25+4x^2} \, .$
 - B. $\frac{2x+5}{25-4x^2}$.
- $3. \quad 8^{3-n} \cdot 5^{9-3n} =$
 - A. 10^{12-4n} .
 - B. 10^{9-3n} .
 - C. 40^{12-4n} .
 - D. 40^{9-3n} .
- 4. Factorize $x^2 + xy 2y^2 3x + 3y$.
 - A. (x+y)(x-2y-3)
 - B. (x+y)(x-2y+3)
 - C. (x-y)(x+2y-3)
 - D. (x-y)(x+2y+3)

- 5. If a and b are constants such that $(x+5)(x-a)-4 \equiv (x-3)^2 + b$, then b =
 - A. -68.
 - B. -60.
 - C. 4.
 - D. 60.
- 6. The solutions of 4x+7 < 6x-3 < 39 are
 - A. 5 < x < 7.
 - B. -5 < x < 7.
 - C. -7 < x < -5.
 - D. x < 5 or x > 7.
- 7. If y = 0.1255 (correct to 4 significant figures), find the range of values of v.
 - A. $0.12545 \le y < 0.12555$
 - B. $0.12545 < y \le 0.12555$
 - C. $0.1254 \le y < 0.1256$
 - D. $0.1254 < y \le 0.1256$
- 8. If a, b and c are non-zero constants such that $8x^2 + 4ax + 6a = 2x(4x+b) + 4c$, then
 - a:b:c=
 - A. 2:4:3.
 - B. 3:4:2.
 - C. 4:6:3.
 - D. 6:4:3.

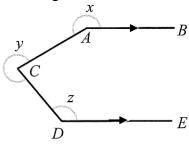
- 9. Let f(x) be a polynomial. When f(x) is divided by x+5, the remainder is -10. If f(x) is divisible by x-5, find the remainder when f(x) is divided by x^2-25 .
 - A. x + 5
 - B. x-5
 - C. 5x + 1
 - D. 5x-1
- 10. The figure shows the graph of $y = (x-h)^2 k$. Which of the following is true?



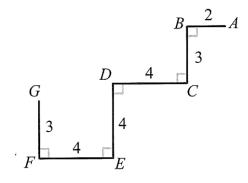
- A. h > 0 and k > 0
- B. h < 0 and k > 0
- C. h > 0 and k < 0
- D. h < 0 and k < 0
- 11. The marked price of a shirt is 25% above its cost. A profit of \$40 is made by selling the shirt at a discount of 12% on its marked price. Find the cost of the shirt.
 - A. \$300
 - B. \$350
 - C. \$400
 - D. \$450


- 12. The scale of a map is 1: 40 000. If the actual area of a park is 2 km², then the area of the park on the map is
 - A. 10 cm^2 .
 - B. 12.5 cm^2 .
 - C. 16 cm².
 - D. 20 cm^2 .
- 13. It is given that z varies directly as square of x and inversely as square root of y. When x = 3 and y = 4, z = 306. When x = 4 and y = 64, z =
 - A. 17.
 - B. 34.
 - C. 68.
 - D. 136.
- 14. Suppose x varies directly as y^3 and inversely as z^2 . If y is decreased by 10% and z is increased by 50%, then x is decreased by
 - A. 20%.
 - B. 32.4%.
 - C. 67.6%.
 - D. 70%.
- 15. The base radius of a right circular cone is 10 cm. The figure shows a frustum which is made by cutting off the upper part of the circular cone. The radius of the upper base and the height of the frustum are 4 cm and 9 cm respectively. Find the volume of the frustum.
 - A. $360\pi \,\text{cm}^3$
 - B. $468\pi \, \text{cm}^3$
 - C. $492\pi \text{ cm}^3$
 - D. $1404\pi \text{ cm}^3$

16. The figure shows a rectangle *ABCD* with length 4 cm and width 2 cm. Two semicircles *AEB* and *CFD* are inscribed in the rectangle. Find the shaded region correct to the nearest 0.01 cm².

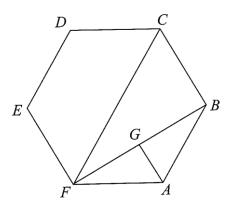


- A. 4.91 cm^2
- B. 4.55 cm^2
- C. 2.82 cm^2
- D. 2.46 cm^2
- 17. In the figure, ABCD and BPDQ are parallelograms. P is a point lying on AD such that AP : PD = 9 : 5. AC cuts BP and DQ at R and S respectively. If the area of $\triangle ABR$ is 252 cm², then the area of the quadrilateral DPRS is

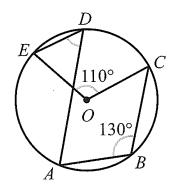


- A. 90 cm^2 .
- B. 162 cm^2 .
- C. 180 cm^2 .
- $D. \quad 230 \ cm^2 \ .$

18. According to the figure, *AB* // *DE*. Which of the following must be true?



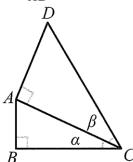
- I. $x + z = 360^{\circ}$
- II. x = y
- III. $x + y z = 360^{\circ}$
- A. I only
- B. III only
- C. I and III only
- D. II and III only
- 19. In the figure, find the length of the line segment joining *A* and *G*.



- A. $\sqrt{116}$
- B. 12
- C. $\sqrt{162}$
- D. 14

20. In the figure, *ABCDEF* is a regular hexagon. *G* is the mid-point of *BF*. Which of the following are true?

- I. $AG \perp BF$
- II. $\triangle ABG \sim \triangle CFB$
- III. AG:CB=1:2
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- 21. In the figure, A, B, C, D and E are points lying on the circle with centre O. If $\angle EOC = 110^{\circ}$ and $\angle ABC = 130^{\circ}$, then $\angle ADE =$

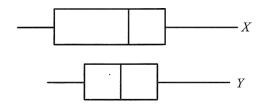


- A. 45°.
- B. 50°.
- C. 60°.
- D. 75°.

22. In the figure, AD is a diameter of the circle with centre O. If AB:BC=1:2, find $\angle BED$.

- A. 64°
- B. 72°
- C. 78°
- D. 84°
- 23. In the figure, $\frac{BC}{AD}$ =

- A. $\frac{\cos \beta}{\tan \alpha}$.
- B. $\frac{\cos \alpha}{\tan \beta}$.
- C. $\frac{\tan \alpha}{\cos \beta}$.
- D. $\frac{\sin \alpha}{\tan \beta}$
- 24. $\frac{\cos 0^{\circ} \sin(270^{\circ} \theta)}{\tan^{2} 45^{\circ} \cos \theta} + \frac{\sin(90^{\circ} + \theta)}{\cos(360^{\circ} \theta)} =$
 - A. 0.
 - B. 2.
 - C. $2 \tan \theta$.
 - D. $-\tan\theta$.


- 25. Find the constant k such that the straight lines 4x-5y-k=0 and 15x+ky-12=0 are perpendicular to each other.
 - A. -12
 - В. -8
 - C. 8
 - D. 12
- 26. If a moving point P is always equidistant from two fixed points A(-2, 1) and B(3, 4), find the equation of the locus of P.
 - A. 5x-3y+10=0
 - B. 5x-3y-10=0
 - C. 5x+3y+10=0
 - D. 5x + 3y 10 = 0
- 27. Which of the following statements about the circle $2x^2 + 2y^2 + 8x 12y 24 = 0$ are true?
 - I. The centre of the circle is (-4, 6).
 - II. The radius of the circle is 5.
 - III. The origin lies inside the circle.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

28. The stem-and-leaf diagram shows the distribution of marks of students in a test.

Stem (tens)	Leaf (units)	
4	245579	
5	0467899	
6	23346777	
7	0 0 1 1	

A student is randomly selected. Find the probability that the marks of the selected one is more than 62.

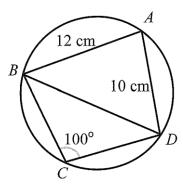
- A. 0.8
- B. 0.62
- C. 0.48
- D. 0.44
- 29. The box-and-whisker diagrams below show the distributions of two data sets *X* and *Y*. Which of the following must be true?

- I. Mean of X > Mean of Y
- II. Range of X >Range of Y
- III. Inter-quartile range of X > Inter-quartile range of Y
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

30. Consider the following data

1 3 5 7 7 10 13 a b c where a, b and c are integers with $1 \le a \le b \le c$. If the mean and the range of the above data are 7 and 20 respectively, which of the following is/are true?

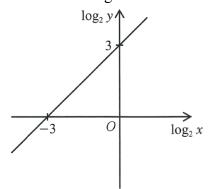
I.
$$c \le 20$$


II.
$$b=2$$

III.
$$a > 1$$

- A. II only
- B. III only
- C. I and II only
- D. I and III only

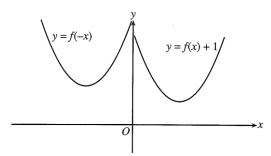
Section B


31. In the figure, A, B, C and D are points lying on the circle. If AB = 12 cm, AD = 10 cm and $\angle BCD = 100^{\circ}$, find BD correct to the nearest cm.

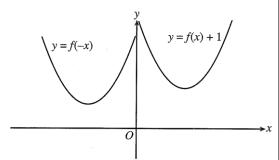
- A. 12 cm
- B. 13 cm
- C. 14 cm
- D. 15 cm

- 32. The L.C.M. of $15a^2b$, $30b^3c$ and $90a^3c^2$ is
 - A. $15a^2bc$.
 - B. $60a^2b^3c$.
 - C. $90a^3b^3c^2$.
 - D. $90a^5b^4c^3$.
- 33. The graph in the figure shows the linear relation between $\log_2 x$ and $\log_2 y$.

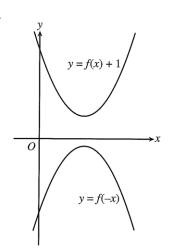
Which of the following must be true?

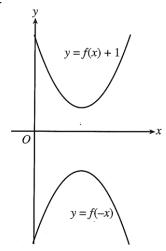

- A. x y = -8
- B. 8x y = 0
- C. $8x^3 y^3 = 0$
- D. $x^3 y^3 = -8$
- 34. If k is a real number, then the real part of

$$\frac{2+i^6}{k-i}+i^5 \text{ is}$$


- A. $\frac{-1}{k^2+1}$.
- B. $\frac{k}{k^2+1}$.
- C. $\frac{2+k^2}{k^2+1}$
- D. $\frac{1+k^3}{k^2+1}$
- 35. Solve the equation $\cos^2 \theta + 4\sin \theta = 4$, where $0^{\circ} \le \theta \le 360^{\circ}$.
 - A. $\theta = 45^{\circ}$ or 135°
 - B. $\theta = 90^{\circ}$
 - C. $\theta = 0^{\circ}$, 180° or 360°
 - D. No solution

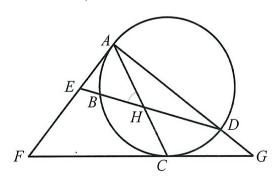
36. Which of the following may represent the graph of y = f(x)+1 and the graph of y = f(-x) on the same rectangular coordinate system?


A.


B.

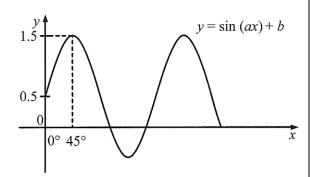
C.

D.



37. Consider the following system of inequalities:

$$\begin{cases} x \ge 0 \\ y \ge 0 \\ x \le 12 - 2y \\ 2y \le 20 - 5x \end{cases}$$


Let R be the region which represents the solution of the above system of inequalities. If (x, y) is a point lying in R, then the greatest value of 2x+y+30 is

- A. 36.
- B. 38.
- C. 39.
- D. 40.
- 38. In the figure, FEA and FCG are tangents to the circle ABCD at A and C respectively. AHC and EBHD are straight lines. AD is a diameter of the circle. If $\angle ADH = 22^{\circ}$ and $\angle AFC = 52^{\circ}$, then $\angle AHE =$

- A. 48°.
- B. 50°.
- C. 52°.
- D. 60°.
- 39. Find the range of values of k such that the straight line x+y-k=0 meets the circle $x^2+y^2=16$.
 - A. $k < -4\sqrt{2}$ or $k > 4\sqrt{2}$
 - B. $k \le -4\sqrt{2}$ or $k \ge 4\sqrt{2}$
 - C. $-4\sqrt{2} \le k \le 4\sqrt{2}$
 - D. $k \le 4\sqrt{2}$

40. Let a and b be constants and $0^{\circ} \le \theta \le 360^{\circ}$. If the figure shows the graph of $y = \sin(ax) + b$, then

- A. a = 0.5 and b = -0.5.
- B. a = 0.5 and b = 0.5.
- C. a = 2 and b = -1.5.
- D. a = 2 and b = 0.5.
- 41. Let O be the origin. If the coordinates of points A and B are (8, 0) and (2, 6) respectively, then the coordinates of the circumcentre of $\triangle OAB$ are
 - A. (1, 6).
 - B. (2, 5).
 - C. (2, 4).
 - D. (4, 2).
- 42. There are 10 boys and 20 girls in a class. If 6 students are selected to form a committee of at least 3 girls, then the number of different committees can be formed is
 - A. 548 625.
 - B. 509 865.
 - C. 354 825.
 - D. 136 800.

- 43. A bag contains 4 red marbles, 6 blue marbles and 10 green marbles. A marble is drawn one by one from the bag without replacement until a blue marble is drawn. Find the probability that at least three draws are needed.
 - A. $\frac{3}{10}$
 - B. $\frac{7}{20}$
 - C. $\frac{89}{190}$
 - D. $\frac{91}{190}$
- 44. In a mathematics test, the mean mark is 54 marks. Keith gets 60 marks and his standard score is 2. If Valerie gets 96 marks, then her standard score is
 - A. 6.
 - B. 9.
 - C. 11.
 - D. 14.
- 45. A data set has a mean of *a*, an inter-quartile range of *b* and a standard deviation of *c*. If 5 is deducted from each number of the set and then all of them are multiplied by 2 to form a new data set, find the mean, the inter-quartile range and the standard deviation of the new data set.

	Mean	Inter-quartile	Standard
		<u>range</u>	<u>deviation</u>
A.	a	b	С
В.	2a - 10	2b - 10	c-2
C.	2a - 10	2b	2c
D.	2a	2b	2c