
MATHEMATICS Compulsory Part PAPER 1

Question–Answer Book

11th June, 2024 8:15 am – 9:45 am (1 hour 30 minutes) **This paper must be answered in English**

INSTRUCTIONS

- 1. Write your name, class and class number in the spaces provided on this cover.
- 2. This paper consists of THREE sections, A(1), A(2) and B.
- 3. Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- 4. Unless otherwise specified, all working must be clearly shown.
- 5. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
- 6. The diagrams in this paper are not necessarily drawn to scale.

Sections	Marks
A (1 – 4)	
A (5 – 10)	
A Total	/46
B Total	/24
TOTAL	/70

Simplify $\frac{(-5x^2)^3}{-25x^4}$ and express your answer with positive indices.	(3 m
(a) Factorize $9-24y+16y^2$.	
(a) Factorize $9-24y+16y^2$. (b) Hence, factorize $9-24y+16y^2+4y-3$.	(4 m
	(4 m

Make w the su	ubject of the formu	$1 \ln \frac{2(n-1)}{7} = k^2 w$		(3 1
	ght of 5 lemons and ght of 5 lemons and ght of 5 lemons and ght of 5 lemons and		tal weight of 4	
			tal weight of 4	
			tal weight of 4	
			tal weight of 4	
			tal weight of 4	
			tal weight of 4	
			tal weight of 4	
			tal weight of 4	lemon (4 1
			tal weight of 4	
			tal weight of 4	
			tal weight of 4	
			tal weight of 4	
			tal weight of 4	
			tal weight of 4	

5.	It is given that $g(x) = x^2 + (k+1)x - k$ and $g(1) = g(-10)$, where k is a constant. (a) Find the value of k . (b) Find the negative integer n such that $2g(n) = g(n+2) + 6$.	
		(4 marks)

6.	In Figure 1, O is the centre of the circle $PSQR$. POR is a straight line. $\angle ROQ = 84^{\circ}$. Find $\angle QPS$.	PS = SQ and (4 marks)
	O 84°	
	P Q S Figure 1	

Sec	tion A	A(2) (24 marks)	
7.	Let $f(x)$	$f(x) = 8x^3 - kx^2 + 33x - 9$, where k is a constant. It is given that $x - 3$	is the factor of
		Find the value of k .	(2 marks)
		Someone claims that all roots of the equation $f(x) = 0$ are positive.	
	()	Explain your answer.	(4 marks)
			,

8.	In Figure 2, O is the centre of the semi-circle. ABCD is a trapezium with upper band height of 4 cm. Let M be the mid-point of BC.	ase of 6 cn
	(a) Find the length of OB.	(2 marks)
	(b) Find the perimeter of the trapezium. (Give your answer correct to 3 significant	
	(e) This in particular of the trapezhania (e) to Joan and the control to baginitania	(3 marks)
	В	(5 marks)
	A Ô D	
	Figure 2	
	Tigute 2	

9.	A factory makes different kinds of chocolate. It is known that the cost (\$C) of n pack of chocolate is the sum of two parts. One part varies directly as the square of $(m \text{ g})$ of cocoa beans used in each pack of chocolate. The other part varies invenumber of packs of chocolate made $(r \text{ packs})$ and directly as the total number of m operated in making chocolate. When $m = 10$, $n = 40$ and $r = 20 000$, $C = 25$. When $m = 3$ and $m = 2500$, $m = 3$.	f the weight rsely as the nachines (n)
	(a) Express C in terms of m , n , and r .	(4 marks)
	(b) Given that $C = 40$, $r = 10000$ and $n = 20$, find the value of m .	(2 marks)
	(c) Suggest ONE possible value for n and r respectively if $C = 100$ and $m = 40$.	(1 mark)

Answers written in the margins will not be marked 2023-2024-S4 2nd TERM EXAM-MATH-CP 1-9

10. In Figure 3, the graph of $y = 2(x-h)^2 - 8$ with vertex V cuts the x-axis at A and B(5, 0), where A lies on the left of B. Given that $y = 2(x-h)^2 - 8$ intersects the y-axis at C.

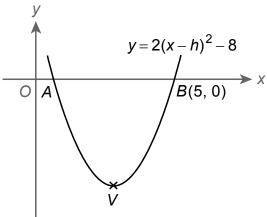


Figure 3

(a) Find the value(s) of h.

(2 marks)

(b) Write down the coordinates of A.

(1 mark)

(c) Find the area of quadrilateral AVBC.

(3 marks)

(-)	(

	equation $(2^x)^2 - 7(2^x) + 6 = 0$.	(4 ma
2. Simplify	$1 + \cos(270^\circ + \theta)\sin(90^\circ + \theta)\tan(180^\circ - \theta).$	(3 ma
2. Simplify	$1 + \cos(270^\circ + \theta)\sin(90^\circ + \theta)\tan(180^\circ - \theta).$	(3 ma
2. Simplify	$1 + \cos(270^\circ + \theta)\sin(90^\circ + \theta)\tan(180^\circ - \theta).$	(3 ma
2. Simplify	$1 + \cos(270^\circ + \theta)\sin(90^\circ + \theta)\tan(180^\circ - \theta).$	(3 ma
2. Simplify	$1 + \cos(270^\circ + \theta)\sin(90^\circ + \theta)\tan(180^\circ - \theta).$	(3 ma
2. Simplify	$1 + \cos(270^\circ + \theta)\sin(90^\circ + \theta)\tan(180^\circ - \theta).$	(3 ma
2. Simplify	$1 + \cos(270^\circ + \theta)\sin(90^\circ + \theta)\tan(180^\circ - \theta).$	(3 ma
2. Simplify	$1 + \cos(270^\circ + \theta)\sin(90^\circ + \theta)\tan(180^\circ - \theta).$	(3 ma
2. Simplify	$1 + \cos(270^\circ + \theta)\sin(90^\circ + \theta)\tan(180^\circ - \theta).$	(3 ma
2. Simplify	$1 + \cos(270^\circ + \theta)\sin(90^\circ + \theta)\tan(180^\circ - \theta).$	(3 ma
2. Simplify	$1 + \cos(270^\circ + \theta)\sin(90^\circ + \theta)\tan(180^\circ - \theta).$	(3 ma
2. Simplify	$1 + \cos(270^\circ + \theta)\sin(90^\circ + \theta)\tan(180^\circ - \theta).$	(3 ma
2. Simplify	$1 + \cos(270^\circ + \theta)\sin(90^\circ + \theta)\tan(180^\circ - \theta).$	(3 ma
2. Simplify	$1 + \cos(270^\circ + \theta)\sin(90^\circ + \theta)\tan(180^\circ - \theta).$	(3 ma
2. Simplify	$1 + \cos(270^\circ + \theta) \sin(90^\circ + \theta) \tan(180^\circ - \theta).$	(3 ma
2. Simplify	$1 + \cos(270^\circ + \theta)\sin(90^\circ + \theta)\tan(180^\circ - \theta).$	(3 ma

13.

a. $\log_5 y$ 6 O 3 $\log_5 x$ Figure 4 (4 marks)	Figure 4 shows a linear relation between $\log_5 y$ and $\log_5 x$. If $y = ax^k$, find the values of k and
$\frac{6}{O} = \log_5 x$ Figure 4	a.
(4 marks)	$\frac{6}{O} = \log_5 x$
	(4 marks)

(Give your answers correct to 1 decimal place if necessary.)	(4

15. In Figure 5, the straight lines L_1 and L_2 : 3x+y-6=0 are perpendicular to each other and intersect at point P. The y-intercept of L_1 is 1 and L_1 cuts the x-axis at A.

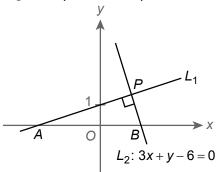


Figure 5

(a) Find the equation of L_1 .

(3 marks)

(b) Find the coordinates of P.

(2 marks)

Answers written in the margins will not be marked

(c) Zoe claims that if L_2 cuts the x-axis at B, the area of $\triangle OAP$ is twice the area of $\triangle OBP$. Do you agree? Explain your answer. (4 marks)

END OF PAPER

Answers written in the margins will not be marked 2023-2024-S4 2nd TERM EXAM-MATH-CP 1-15