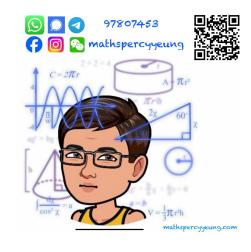


MATHEMATICS Compulsory Part PAPER 1


Question-Answer Book

5th January, 2024 8:15 am – 9:15 am (1 hour)

This paper must be answered in English

INSTRUCTIONS

- 1. Write your name, class and class number in the spaces provided on this cover.
- 2. This paper consists of THREE sections, A(1), A(2) and B.
- 3. Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- 4. Unless otherwise specified, all working must be clearly shown.
- 5. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
- 6. The diagrams in this paper are not necessarily drawn to scale.

Sections	Marks
A (1 – 4)	
A(5-6)	
A Total	/27
B Total	/23
TOTAL	/50

Siı	mplify $\frac{2p^3q^{-1}}{(-3p^{-2}q^3)^3}$ and express your answer with positive indices.	(3 marks)
	ctorize	
	$r^{2}-10r+25,$ $9s^{2}-r^{2}+10r-25.$	(4 marks)
M	ake k the subject of $\frac{k}{3h} = \frac{2-k}{a}$.	(3 marks)

4.	(a) (b)	Write down all positive integers m such that $m+2n=5$, when n is Write down all values of k such that $2x^2+5x+k \equiv (2x+m)(x+m)$ positive integers.	
			(3 marks
Sec		A(2) (14 marks)	
5.		e straight line L_1 : $2x - 3y + k + 1 = 0$ passes through $A(2k - 1, k + 3)$	and cuts the y-axis at h
	P is	is a point on line segment AB such that $AP : PB = 2 : 1$.	
	(a)	Find the value of k .	(2 marks
	(b)	Find the coordinates of P .	(4 marks

(-)	ven that $f(1) = 4$.	
(a)	(i) Find $f(x)$.	
	(ii) Find $f(-3)$.	
		(4 ma
(b)	Someone claims that all the roots of the equation $f(x) = 0$ are rational r	numbers. I
	claim correct? Explain your answer.	(4 ma

Sec 7.	ection B (23 marks) It is given that m is a constant and the sum of roots of the equation $10x^2 + 3mx + 2 = 0$ is greater than the product of roots by $\frac{7}{10}$.			
	(a) Find the value of m . (3 mag)			
	(b)	From the result of (a), solve the equation $10x^2 + 3mx + 2 = 0$.	(2 marks)	

8. In Figure 1, AP is an altitude of the $\triangle ABC$. It cuts the y-axis at H.

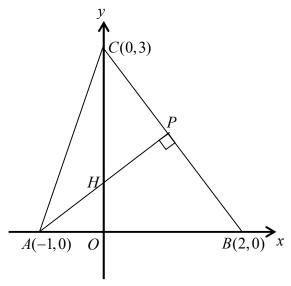


Figure 1

(a) Find the equation of AP.

(4 marks)

- (b) (i) Find the coordinates of H.
 - (ii) Prove that the three altitudes of the triangle ABC pass through the same point.

(5 marks)

Answers written in the margins will not be marked

(c) Find the ratio of the area of $\triangle APB$ to the area of $\triangle ACB$. (3 marks)

9.	Figure 2 shows a rectangular paper with the perimeter of 80cm. A square with sides of
	5 cm each is cut from each corner of the rectangular paper, the remaining part can be folded up
	along the dotted lines to form a container of the volume $A \text{cm}^3$ without a lid.

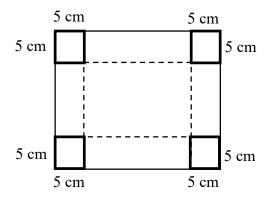


Figure 2

- (a) Let the width of the container be x cm. Express A in terms of x. (3 marks)
- (b) If the container is filled with 510cm³ of water, will the container overflow? Explain briefly. (3 marks)

END OF PAPER