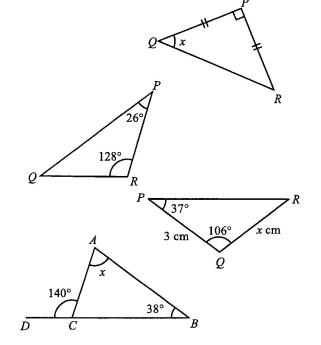
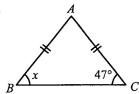
TT S2 SBE Ch4 Angles Related to Rectilinear Figures Q

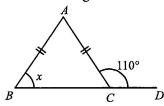

Paper I

Theorems of Triangles

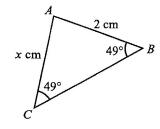
$B \xrightarrow{a} C$	$a+b+c=180^{\circ} (\angle sum \ of \triangle)$
$B \xrightarrow{A} D$	BCD is a straight line. $a + b = d (ext. \angle of \triangle)$
B C	If $AB = AC$, then $\angle ABC = \angle ACB$ (base $\angle s$, isos. \triangle)
B A C	If $\angle ABC = \angle ACB$, then $AB = AC$ (sides opp. equal $\angle s$)

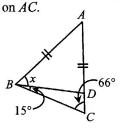

Exercise 4A

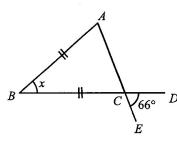
- 1. In the figure, PQ = PR. Find x.
- 2. Prove that $\triangle PQR$ is an isosceles triangle.
- 3. In the figure, find x.
- 4. In the figure, BCD is a straight line. Find x.

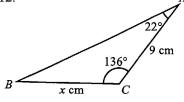


In each of the following, find the unknown(s). (5-13)

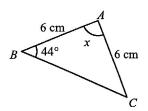

5.


8. BCD is a straight line.

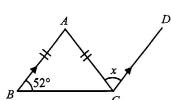

11.


6. AB = AC and D is a point on AC.

9. *BCD* and *ACE* are straight lines.

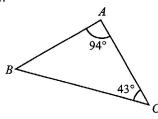


12.

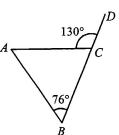


13. BCD is a straight line.

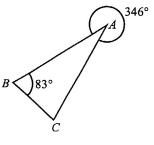
7.

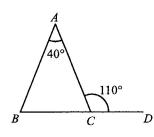


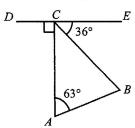
10.

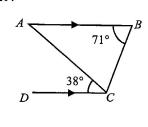


In each of the following, determine whether $\triangle ABC$ is an isosceles triangle. (14 – 19)

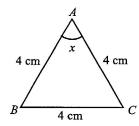

14.


16. BCD is a straight line.

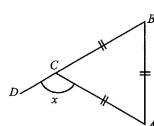

18.


15. BCD is a straight line.

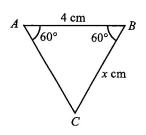
17. DCE is a straight line.

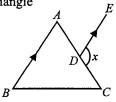


19.

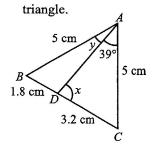


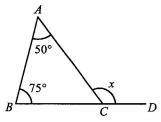
In each of the following, find the unknown(s). (20-34)

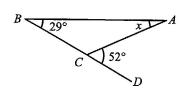

20.

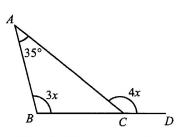

21. BCD is a straight line.

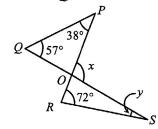
22.

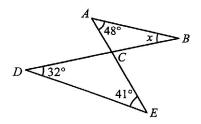

23. $\triangle ABC$ is an equilateral triangle

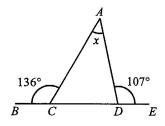

24.

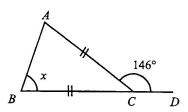

25. BDC is a straight line.

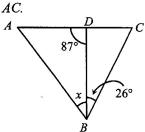

26. BCD is a straight line.

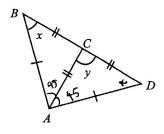

27. BCD is a straight line.


28. BCD is a straight line.

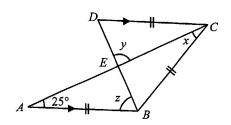

29. PR and QS intersect at O.


30. AE and BD intersect at C.

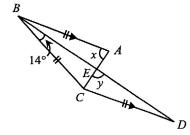

31. BCDE is a straight line.


32. BCD is a straight line.

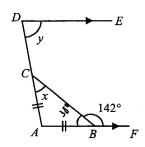
33. AB = AC and D is a point on

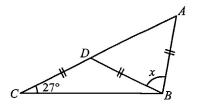


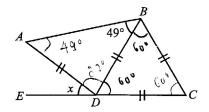
34. BCD is a straight line.

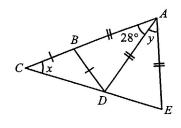


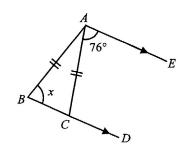
In each of the following, find the unknown(s). (35-40)

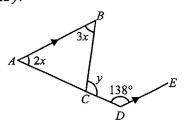

35. AC and BD intersect at E.

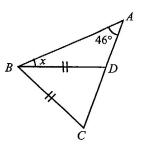

36. AC and BD intersect at E.

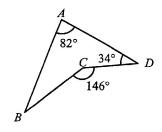

37. ABF and ACD are straight lines.

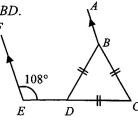

38. ADC is a straight line.

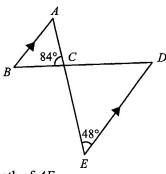

39. CDE is a straight line.

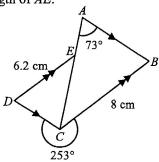

40. ABC and CDE are straight lines.

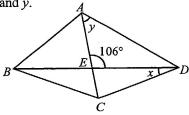

41. In the figure, BCD is a straight line. AE // BD. Find x.

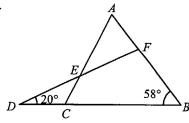

42. In the figure, ACD is a straight line. AB // DE. Find x and y.


43. In the figure, AB = AC and D is a point on AC. Find x.

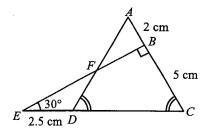

44. In the figure, find $\angle ABC$.


45. In the figure, EDC is a straight line. AB // FE and BC = CD = DB. Find $\angle ABD$. (Hint: ABC is a NOT straight line)

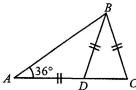

- 46. In the figure, AB // DE. AE and BD intersect at C.
 - (a) Find $\angle ABC$.
 - (b) If AE = 9 cm and BC = 4 cm, find the length of CD.


47. In the figure, AEC is a straight line. AB // DC and CB // DE. Find the length of AE.

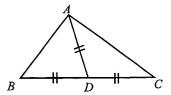
48. In the figure, AC and BD intersect at E. If AB = BC = AC = CD, find x and y.



49. In the figure, AC and DF intersect at E. If AB = BC, find $\angle AED$.



- 50. In the figure, B and D are points on AC and CE respectively.

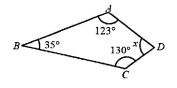

 AD and BE intersect at F. $\angle ADC = \angle ACD$.
 - (a) Find $\angle ADC$ and $\angle DFE$.
 - (b) Find the length of AF.

51. In the figure, ABC is a triangle in which $\angle BAC = 36^{\circ}$. D is a point on AC such that AD = BD = BC. Is $\triangle ABC$ an isosceles triangle? Explain your answer.

52. In the figure, D is a point on BC such that AD = CD = BD. Prove that $\triangle ABC$ is a right-angled triangle.

Angles of Polygons

The sum of interior angles of an *n*-sided polygon is $(n-2) \times 180^{\circ}$.

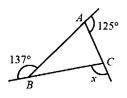

[Reference: ∠ sum of polygon]

e.g. In the figure, find x.

$$x + 123^{\circ} + 35^{\circ} + 130^{\circ} = (4 - 2) \times 180^{\circ} (\angle sum \ of \ polygon)$$

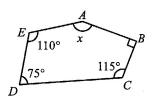
$$x + 288^{\circ} = 360^{\circ}$$

$$x = 72^{\circ}$$

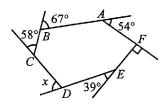

The sum of exterior angles of a convex polygon is 360° . e.g. In the figure, find x.

[Reference: sum of ext. $\angle s$ of polygon]

 $x + 125^{\circ} + 137^{\circ} = 360^{\circ}$ (sum of ext. $\angle s$ of polygon)

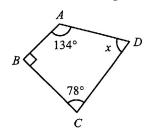

$$x + 262^{\circ} = 360^{\circ}$$

$$x = 98^{\circ}$$

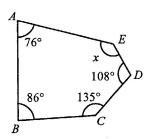


Exercise 4B

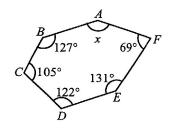
1. In the figure, find x.

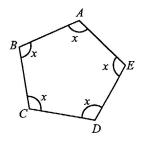


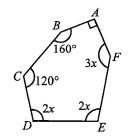
- 2. Consider a regular 12-sided polygon.
 - (a) Find the sum of interior angles of the polygon.
 - (b) Find the size of each interior angle of the polygon.
- 3. In the figure, find x.

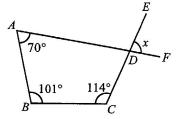


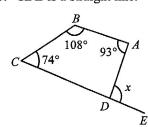
In each of the following, find x. (4 – 18)

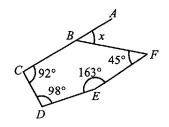

4.

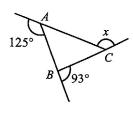

5.

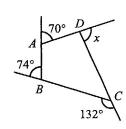

6.

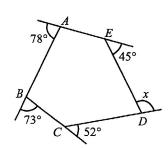

7.

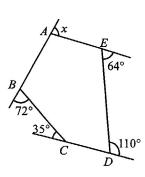

8.

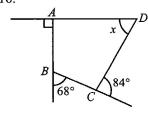

9. ADF and CDE are straight lines.

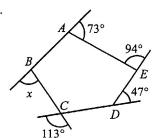

10. CDE is a straight line.

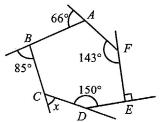

11. ABC is a straight line.


12.

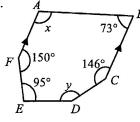

13.

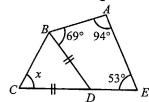

14.


15.

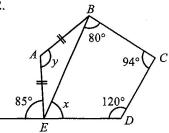

16.

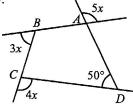
17.

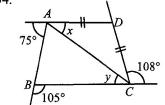

18.

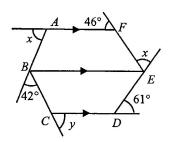

- 19. Find the sum of interior angles of a pentagon.
- 20. Find the sum of interior angles of a decagon (i.e. a 10-sided polygon).
- 21. Find the size of each interior angle of a regular 15-sided polygon.
- 22. Find the size of each interior angle of a regular 20-sided polygon.
- 23. Find the number of sides of a polygon if the sum of its interior angles is 2880°.
- 24. Find the number of sides of a polygon if the sum of its interior angles is 5760°.
- 25. Find the number of sides of a regular polygon if the size of each interior angle is 135°.
- 26. Find the size of each exterior angle of a regular hexagon.
- 27. Find the size of each exterior angle of a regular 16-sided polygon.
- 28. Find the number of sides of a regular polygon if the size of each exterior angle of the polygon is 120°.
- 29. Find the number of sides of a regular polygon if the size of each exterior angle of the polygon is 20°.

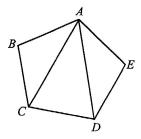
In each of the following, find the unknown(s). (30-35)

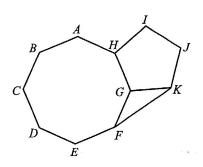

30.

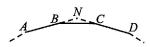

31. CDE is a straight line.

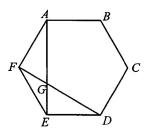

32.

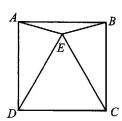

33.

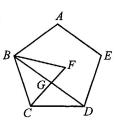

34.

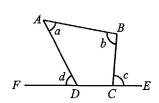

35.


- 36. The sum of interior angles of an *n*-sided polygon is three times that of a regular hexagon. Find the value of *n*.
- 37. The sum of interior angles of an n-sided polygon is five times that of a regular pentagon. Find the value of n.
- 38. Each interior angle of a regular polygon is 165°.
 - (a) Find the number of sides of the polygon.
 - (b) Find the sum of interior angles of the polygon.
- 39. Each interior angle of a regular polygon is 168°.
 - (a) Find the number of sides of the polygon.
 - (b) Find the sum of interior angles of the polygon.
- 40. The exterior angle of a regular polygon is 22.5°. Find the sum of interior angles of the polygon.
- 41. The exterior angle of a regular polygon is 40°. Find the sum of interior angles of the polygon.
- 42. Each interior angle of a regular polygon is 5 times each exterior angle.
 - (a) Find the size of each exterior angle of the polygon.
 - (b) Find the number of sides of the polygon.
- 43. Each interior angle of a regular polygon is 7 times each exterior angle.
 - (a) Find the size of each exterior angle of the polygon.
 - (b) Find the number of sides of the polygon.
- 44. Is it possible that an interior angle of a regular polygon is 100°? Explain your answer.
- 45. In the figure, ABCDE is a regular pentagon. Find $\angle CAD$.

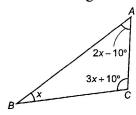

46. In the figure, ABCDEFGH is a regular octagon and GHIJK is a regular pentagon. Find $\angle GKF$.


47. In the figure, ABCD is a part of a regular polygon. AB and DC are extended to meet at N. If $\angle BNC = 150^{\circ}$, find the number of sides of the polygon.

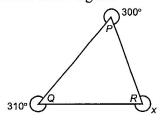

48. In the figure, ABCDEF is a regular hexagon. AE and DF intersect at G. Find $\angle FDE$ and $\angle AGD$.


49. In the figure, ABCD is a square and $\triangle CDE$ is an equilateral triangle. Find $\angle AEB$.

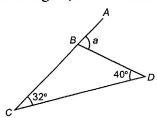
50. In the figure, ABCDE is a regular pentagon and $\triangle BCF$ is an equilateral triangle. BD and CF intersect at G. Find $\angle DGF$.



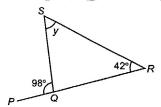
51. In the figure, FDCE is a straight line. Show that a + b = c + d.



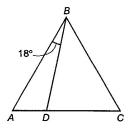
Paper II


1. Find x in the figure.

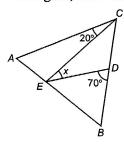
- A. 25°
- B. 30°
- C. 36°
- D. 40°
- 2. Find x in the figure.



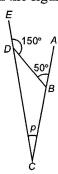
- A. 290°
- B. 300°
- C. 310°
- D. 320°
- 3. In the figure, ABC is a straight line. Find a.


- A. 32°
- B. 40°
- C. 72°
- D. 108°

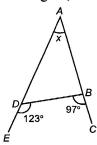
4. In the figure, PQR is a straight line. Find y.


- A. 40°
- B. 42°
- C. 56°
- D. 98°

5. In the figure, $\triangle ABC$ is an equilateral triangle. Find $\angle BDC$.

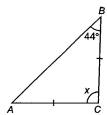

- A. 42°
- B. 54°
- C. 60°
- D. 78°

6. In the figure, AEB and BDC are straight lines. $\triangle ABC$ is an equilateral triangle. Find x.

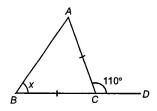


- A. 20°
- B. 30°
- C. 50°
- D. 60°

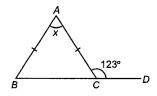
7. In the figure, ABC and CDE are straight lines. Find p.



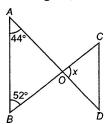
- A. 20°
- B. 30°
- C. 40°
- D. 50°
- 8. In the figure, ABC and ADE are straight lines. Find x.



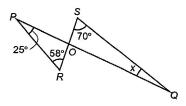
- A. 26°
- B. 40°
- C. 57°
- D. 83°


9. Find x in the figure.

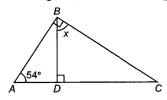
- A. 44°
- B. 88°
- C. 92°
- D. 112°
- 10. In the figure, BCD is a straight line. Find x.



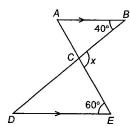
- A. 20°
- B. 50°
- C. 55°
- D. 70°
- 11. In the figure, BCD is a straight line. Find x.



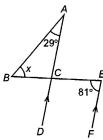
- A. 41°
- B. 57°
- C. 61.5°
- D. 66°


12. In the figure, AOD and BOC are straight lines. Find x.

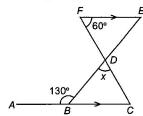
- A. 74°
- B. 78°
- C. 84°
- D. 96°
- 13. In the figure, POQ and ROS are straight lines. Find x.



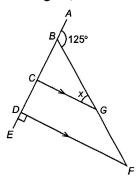
- A. 12°
- B. 13°
- C. 25°
- D. 45°
- 14. In the figure, ADC is a straight line. Find x.


- A. 27°
- B. 36°
- C. 48°
- D. 54°

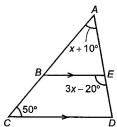
15. In the figure, ACE and BCD are straight lines, and $AB /\!\!/ DE$. Find x.


- A. 80°
- B. 100°
- C. 120°
- D. 140°

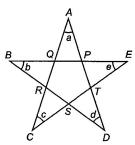
16. In the figure, BCE and ACD are straight lines, and AD // EF. Find x.


- A. 52°
- B. 55°
- C. 61°
- D. 70°

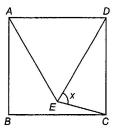
17. In the figure, ABC, BDE and CDF are straight lines, and AC//FE. Find x.


- A. 50°
- B. 60°
- C. 65°
- D. 70°

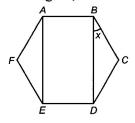
18. In the figure, ABCDE and BGF are straight lines, and $CG/\!/DF$. Find x.


- A. 25°
- B. 35°
- C. 50°
- D. 55°

19. In the figure, ABC and AED are straight lines, and BE // CD. Find x.


- A. 15°
- B. 35°
- C. 40°
- D. 50°

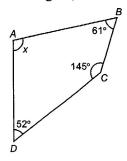
20. In the figure, AQRC, APTD, BQPE, BRSD and CSTE are straight lines. Find a+b+c+d+e.



- A. 180°
- B. 240°
- C. 270°
- D. 360°

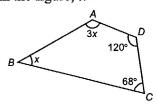
21. In the figure, ABCD is a square and $\triangle ADE$ is an equilateral triangle. Find x.

- A. 30°
- B. 45°
- C. 60°
- D. 75°
- 22. In the figure, ABCDEF is a regular hexagon and ABDE is a rectangle. Find x.

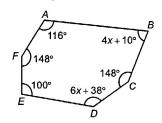


- A. 15°
- B. 30°
- C. 45°
- D. 60°
- 23. Find the sum of interior angles of a heptagon.
 - A. 540°
 - B. 720°
 - C. 900°
 - D. 1 080°

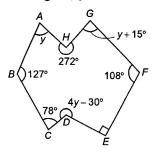
24. Find the sum of interior angles of a regular 14-sided polygon.


- A. 180°
- B. 360°
- C. 2 160°
- D. 2520°

25. In the figure, x =


- A. 101°.
- B. 102°.
- C. 103°.
- D. 104°.

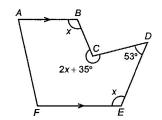
26. In the figure, x =


- A. 38°.
- B. 43°.
- C. 48°.
- D. 53°.

27. In the figure, x =

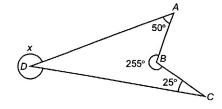
- A. 16°.
- B. 18°.
- C. 20°.
- D. 22°.

28. In the figure, y =

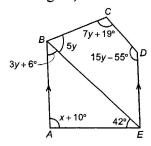

- A. 60°.
- B. 65°.
- C. 70°.
- D. 85°.

29. Find the size of each interior angle of a regular decagon.

- A. 120°
- B. 135°
- C. 144°
- D. 150°

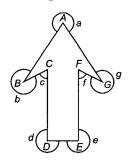

30.	Fine	d the size of each interior angle of a regular 20-sided polygon.
	A.	162°
	В.	164°
	C.	171°
	D.	180°
31. If the sum of interior angles of an <i>n</i> -sided polygon is 4 860°, then $n =$		
	A.	25.
	В.	27.
	C.	29.
	D.	31.
32.	If the	e sum of interior angles of a polygon is 3 060°, find the number of sides of the polygon.
	A.	13
	В.	15
	C.	17
	D.	19
33. If the size of each interior angle of a regular polygon is 170°, find the number of sides of the regular polygon.		
	A.	34
	В.	36
	C.	38
	D.	40
34.	regu	e size of each interior angle of a regular polygon is 156°, find the number of sides of the lar polygon.
		11
	B.	
		15
	D.	17

35. In the figure, x =

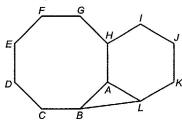

- A. 108°.
- B. 110°.
- C. 111°.
- D. 113°.

36. In the figure, x =

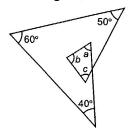
- A. 250°.
- B. 280°.
- C. 300°.
- D. 330°.


37. In the figure, x =

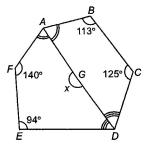
- A. 73°.
- B. 83°.
- C. 93°.
- D. 103°.


38.	An octagon has three equal interior angles, and the sum of the other five interior angles is 360°. Find the size of each of the three equal interior angles.		
	A.	90°	
	B.	144°	
	C.	216°	
	D.	240°	
39.	 If the interior angles of a hexagon are in the ratio of 1:1:2:3:8:9, find the size of the smallest interior angle. 		
	A.	30°	
	B.	36°	
	C.	60°	
	D.	72°	
40.	0. The sizes of interior angles of a heptagon are in the ratio of 2:2:4:5:7:7:9. Find the size of the largest interior angle.		
	A.	25°	
	B.	50°	
	C.	225°	
	D.	315°	
41.	If the $n =$	e sum of interior angles of an <i>n</i> -sided polygon is more than that of a decagon by 360°, then	
	A.	8.	
	B.	9.	
	C.	12.	
	D.	14.	
42.		e sum of interior angles of an n -sided polygon is less than that of a pentagon by 180°, find value of n .	
	A.	3	
	В.	4	
	C.	6	
	D.	7	

43. In the figure, a+b+c+d+e+f+g =

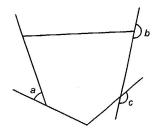

- A. 360°.
- B. 720°.
- C. 1260°.
- D. 1620°.

44. In the figure, ABCDEFGH is a regular octagon and AHIJKL is a regular hexagon. Find $\angle CBL$.

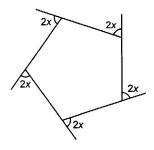


- A. 157.5°
- B. 165°
- C. 172.5°
- D. 180°

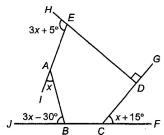
45. In the figure, a+b+c=



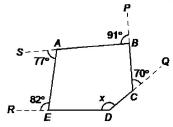
- A. 150°.
- B. 180°.
- C. 210°.
- D. 240°.
- 46. In the figure, ABCDG and AFEDG are pentagons. $\angle BAG = \angle FAG$ and $\angle GDC = \angle GDE$. Find x.


- A. 124°
- B. 174°
- C. 178°
- D. 182°
- 47. Which of the following must NOT be an interior angle of a regular polygon?
 - A. 165.6°
 - B. 168.75°
 - C. 170.5°
 - D. 172.8°

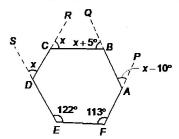
48. In the figure, which of the following is/are the exterior angle(s) of the polygon?


- I. a
- II. b
- III. c
- A. I only
- B. II only
- C. I and II only
- D. II and III only
- 49. Find the sum of exterior angles of a regular 36-sided polygon.
 - A. 170°
 - B. 360°
 - C. 4320°
 - D. 6480°
- 50. Find the size of each exterior angle of a regular octagon.
 - A. 45°
 - B. 60°
 - C. 90°
 - D. 135°
- 51. Find the size of each exterior angle of a regular 45-sided polygon.
 - A. 4°
 - B. 6°
 - C. 8°
 - D. 10°

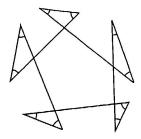
- 52. If the size of each exterior angle of a regular *n*-sided polygon is 14.4° , then n =
 - A. 22.
 - B. 23.
 - C. 24.
 - D. 25.
- 53. If the size of each exterior angle of a regular polygon is 30°, find the number of sides of the regular polygon.
 - A. 6
 - B. 12
 - C. 14
 - D. 16
- 54. In the figure, the marked angles are exterior angles of the polygon. x =


- A. 18°.
- B. 36°.
- C. 54°.
- D. 72°.

55. In the figure, EAI, JBCF, CDG and HED are straight lines. Find x.

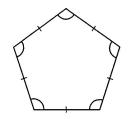

- A. 27°
- B. 35°
- C. 40°
- D. 44°

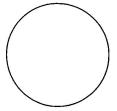
56. In the figure, the sides of the polygon are produced by dotted lines. Find x.


- A. 30°
- B. 40°
- C. 140°
- D. 150°

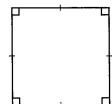
57. In the figure, the sides of the polygon are produced by dotted lines. Find x.

- A. 55°
- B. 60°
- C. 65°
- D. 70°
- 58. The sizes of exterior angles of a convex hexagon are in the ratio of 1:2:3:4:4:6. Find the size of the smallest exterior angle.
 - A. 18°
 - B. 27°
 - C. 36°
 - D. 45°
- 59. If 10 times an exterior angle of a regular polygon is less than its interior angle by 70°, find the number of sides of the regular polygon.
 - A. 30
 - B. 32
 - C. 34
 - D. 36
- 60. If an interior angle of a regular polygon is three times its exterior angle, then this polygon is
 - A. a square.
 - B. a regular pentagon.
 - C. a regular heptagon.
 - D. a regular octagon.

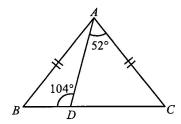

61. Find the sum of all marked angles in the figure.


- A. 180°
- B. 360°
- C. 540°
- D. 720°
- 62. Which of the following must NOT be an exterior angle of a regular polygon?
 - A. 36°
 - B. 32°
 - C. 30°
 - D. 20°
- 63. Which of the following cannot tessellate?
 - A. Equilateral triangles
 - B. Squares
 - C. Regular hexagons
 - D. Regular 12-sided polygons

64. Which of the following can tessellate?

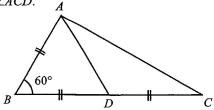

A.

B.


C.

D.

- 65. In the figure, AB = AC and BDC is a straight line. Find $\angle BAD$.
 - A. 12°
 - B. 24°
 - C. 26°
 - D. 39°



66. In the figure, D is a point on BC such that AB = BD = DC. Find $\angle ACD$.

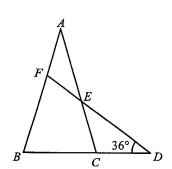
C. 40°

D. 50°

67. In the figure, AFB, BCD, AEC and DEF are straight lines. If AB = AC and CD = CE, which of the following are true?

I. $\angle BAC = 36^{\circ}$

II. $\triangle AFE$ is an isosceles triangle.

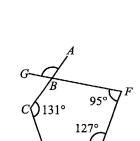

III. $\triangle BDF$ is an isosceles triangle.

A. I and II only

B. I and III only

C. II and III only

D. I, II and III

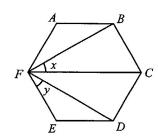

68. In the figure, ABC and FBG are straight lines. $\angle ABG =$

A. 57°.

B. 83°.

C. 97°.

D. 123°.


69. In the figure, ABCDEF is a regular hexagon. x + y =

A. 30°.

B. 45°.

C. 60°.

D. 90°.

- 70. If an interior angle of a regular n-sided polygon is greater than an exterior angle by 120°, which of the following are true?
 - I. The value of n is 12.
 - II. Each exterior angle of the polygon is 30°.
 - III. The sum of interior angles of the polygon is 2160°.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III