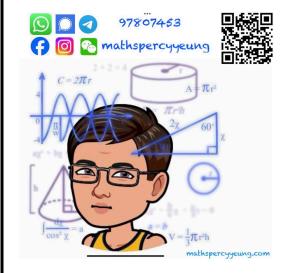


MATHEMATICS

Question-Answer Book


90 minutes

This paper must be answered in English

FULL MARKS: 90

INSTRUCTIONS

- (1) After the announcement of the start of the exam, you should first write your name, class and class number in the spaces provided on Page 1.
- (2) Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- (3) There are **TWO** sections, A and B, in this paper. You are advised to finish Section A in about 30 minutes.
- (4) In Section A, choose the best answer and write the appropriate letter in the box provided.
- (5) In Section B, unless otherwise specified, all working must be clearly shown.
- (6) Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
- (7) The diagrams in this paper are not necessarily drawn to scale.

Section A: Multiple Choice Questions (30 marks)

- Round off 0.0478 to 4 significant figures. 1.
 - 0.0478
- 0.0479 B.
- C. 0.04787
- D.

- - 3^{-x} .
- B. 3.
- C. 3^x .
- 3^{3x-x^2} .

- $3 + 2a a^2 =$ 3.
 - -(a+1)(a+3).
- -(a+1)(a-3). В.
- C. -(a+3)(a-1).
- D. -(a-1)(a-3).

- 4. Which of the following is an irrational number?
 - $sin\,30^\circ$
- B.
- C. $\sqrt{12} \sqrt{3}$
- D. $\sqrt{12} \times \sqrt{3}$

- $(i-1)^2 =$ 5.
 - A. -2.
- B. 0.
- C. –2*i*.
- 2-2i.

- Find the range of k such that the quadratic equation $x^2 + 8x + k = 0$ has no real roots. 6.
 - A. k < -16
- B. k < 16
- C. k > -16
- D. k > 16

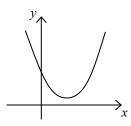
- 7. Let k be a constant. Find the maximum value of $-x^2 + 6x + k$.
 - A. k-9
- B. k+9
- C. *k*

- D. 3

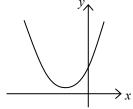
- 8. If $(x-3k)^2 = 9k^2$, then
 - A. x = 0.

B. x = 6k.

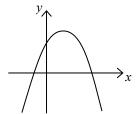
C. x = 6k or x = 12k.

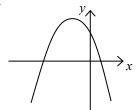

- D. x = 0 or x = 6k.
- 9. If the straight lines $L_1: 2x hy + h = 0$ and $L_2: x y + 2k = 0$ have infinitely many points of intersection, then
 - A. h = -2 and k = -1.

B. h = -2 and $k = \frac{-1}{2}$.


C. h = 2 and k = 1.

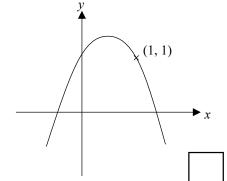
D. h = 2 and $k = \frac{1}{2}$.


- 10. If a < 0, which of the following may represent the graph of $y = \left(\frac{x}{a} + 1\right)^2 + 1$?
 - A.


B.

C.

D.



- 11. Let $m^2 + m = n^2 + n = -2$ where $m \neq n$. Then $m^2 n = -2$
 - A. -3.
- B. -1.
- C. 1.
- D. 3.
- 12. If the equation $3x^2 kx + 3 = x$ has two equal negative roots, then k =
 - A. -7.
- В. -6.
- C. 5.
- D. 6.
- 13. If the roots of the equation $x^2 + 3kx + 2k^2 k 1 = 0$ are α and β , where k is a constant, then $(\alpha \beta)^2 = 1$
 - A. $k^2 + 4k + 4$.

B. $k^2 - 4k - 4$.

C. $5k^2 - 2k - 2$.

- D. $5k^2 + 2k + 2$.
- 14. The figure shows the graph of $ay = x^2 + bx + c$ which passes through (1, 1). Which of the following are true?
 - I. b < 0
 - II. $a \ge b + c$
 - III. $b^2 4c > 0$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

- 15. The straight line 2x y + 4 = 0 cuts the y-axis at the point A and passes through the point B. Let C be a point such that AC is a horizontal line. If the coordinates of the circumcentre of $\triangle ABC$ are (4, 8), find the slope of BC.
 - A. -3
- B. -2
- C. $\frac{-1}{2}$
- D. $\frac{-1}{3}$

S	implify $\frac{(a^3b^{-4})^2}{ab}$ and express your answer with positive indices.	(3 marks)
N	Make y the subject of the formula $Ay + C = \frac{y + A}{B}$.	(3 marks)
	actorize a) $3a^2 + 13a + 4$,	
	$6a^2 + 26a + 8 + ab + 4b.$	(2.1.)
		(3 marks)

	(a) $(x-1)(x-3) = 3(x-3)$	
	(b) $(x-1)(x-3) = 1$	
		(5 marks)
-		
-		
-		
-		
-		
-		
-		
-		
-		
	Let $i = \sqrt{-1}$. (a) Simplify $\frac{5}{2-i}$ and express the answer in the form $a+bi$, where a and b are real numbers.	
	2-i	
	(b) If the real part and the imaginary part of $\frac{5(i-c)}{2-i}$ are equal, where c is a real number, find c.	
	(c) If the real part and the imaginary part of $2-i$ are equal, where e is a real number, find e .	
		(5 marks)
-		
-		
-		
-		
-		
-		
-		
- -		
- -		
-		
-		

(a) Find k .	
(b) Find the coordinates of A.	
	(5 marks)
Find the coordinates of the point of intersection of $L_1: x+3y-6=0$ and $L_2: 2x-y-5=0$.	(3 marks)

3.	Let α and β be the roots of the equation $x^2 + 2x + 10 = 0$.	
	(a) Find $\frac{1}{\alpha} + \frac{1}{\beta}$.	
	(b) Find a quadratic equation with roots $\frac{2}{\alpha}$ and $\frac{2}{\beta}$.	
		(5 marks)

L_1 a	and L_2 cut the y-axis at A and B respectively.	
(a)	Find k .	
(b)	Find the area of $\triangle ABC$.	
(c)	Let P be a point on BC such that the area of $\triangle APC$ is 45. Find the coordinates of P.	
` /	(8 ma	ark
		.uii
_		_

		stangle where the ratio of its length to its width is 3:1. Denote the total area of the square and the rectangle by
(b) By the method of completing the square, find the minimum value of A. (7 mark)	A cn	n^2 .
(7 mark	(a)	Show that $A = \frac{7}{4}x^2 - \frac{21}{2}x + \frac{147}{4}$.
	(b)	By the method of completing the square, find the minimum value of A .
		(7 marks

		re, the graph of $y = x^2 - 2hx + k$ cuts the x-axis at points A and B and	
		exis at point C where $h \neq -1$ and $k \neq 0$. It is given that $OB = OC$.	<i>y</i> ,
(a)		e down the coordinates of B in terms of k .	
(b)		v that 2h + k + 1 = 0.	$A \setminus O$ $B \times X$
(c)	The a	axis of symmetry of the graph of $y = x^2 - 2hx + k$ intersects BC at D.	
	(i)	Express the coordinates of D in terms of h .	
	(ii)	A student claims that AD is an altitude of ΔABC . Do you agree?	
		Explain your answer.	
	(iii)	Find the coordinates of the orthocentre of $\triangle ABC$.	
			(13 mark

END OF PAPER