

F.4 MATHEMATICS Compulsory Part PAPER 2

Time allowed: 1 hour

- When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- All questions carry equal marks.
- ANSWER ALL QUESTIONS. You should mark all your answers on the Answer Sheet.
- You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- No marks will be deducted for wrong answers.

The diagrams in this paper are not necessarily drawn to scale. Choose the best answer for each question.

$$1. \qquad \frac{6^{3n}}{9^n} =$$

- A. 24^n . B. $\frac{2^n}{3^n}$. C. $\frac{8^n}{3^n}$. D. $\frac{8^n}{27^n}$.
- 2. Round up $\sqrt[3]{13}$ to 4 significant figures.
 - A. 2.351
- B. 2.352
- C. 46.87
- D. 46.88

3. If
$$\frac{2}{a} + \frac{2}{x} = \frac{1}{b}$$
, then $x =$

A.
$$\frac{ab}{a-2b}$$
. B. $\frac{2ab}{a-2b}$. C. $\frac{ab}{b-2a}$. D. $\frac{2ab}{b-2a}$.

B.
$$\frac{2ab}{a-2b}$$

C.
$$\frac{ab}{b-2a}$$

4. If
$$4x^2 = 9x$$
, then $x =$

A. 0 or
$$\frac{3}{2}$$

B.
$$\pm \frac{3}{2}$$

C.
$$\frac{9}{4}$$

- A. 0 or $\frac{3}{2}$. B. $\pm \frac{3}{2}$. C. $\frac{9}{4}$. D. 0 or $\frac{9}{4}$.
- 5. If k is a constant such that the equation $x^2 = k(x+4)$ has two equal roots, then k =

6.
$$(x^2 + x + 1)(x^2 - x + 1) =$$

A.
$$x^4 + 1$$
.

A.
$$x^4 + 1$$
 . B. $x^4 - x^2 + 1$.

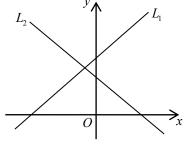
C.
$$x^4 + x^2 + 1$$
.

D.
$$x^4 + 2x^2 + 1$$
.

7. Let
$$f(x) = x^2 + kx$$
, where k is a constant. $f(2x) + 2f(-x) =$

B.
$$4kx$$

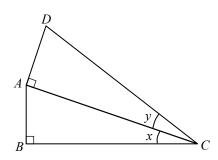
A. 0. B.
$$4kx$$
. C. $2x^2$. D. $6x^2$.


$$D. \quad 6x^2.$$

- 8. The number of rational roots of $2x^3 15x^2 + 5x = 0$ is
 - A. 0.
- B. 1. C. 2.
- D. 3.
- 9. If A, B and C are constants such that $A(x^2-4)+B(2x^2+4x) \equiv Cx+24$, then B + C =
 - A. 3. B. 9. C. 12.
- D. 15.
- 10. Let p be a constant. The quadratic equation with roots 2 and p is
 - A. $x^2 (2+p)x + 2p = 0$. B. $x^2 + (2+p)x + 2p = 0$.

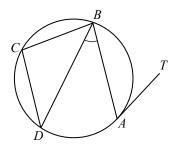
 - C. $x^2 2px + 2 + p = 0$. D. $x^2 + 2px + 2 + p = 0$.
- 11. The perimeter and diagonal of a rectangle are 80 cm and 30 cm respectively. Find the area of the rectangle.
 - A. 350 cm^2

- B. 520 cm^2 C. 700 cm^2 D. 2750 cm^2
- 12. Let $f(x) = x^3 + 3x^2 + 6x + k$, where k is a constant. If f(x) is divisible by x+1, find the remainder when f(x) is divided by 2x-4.
 - A. 18
- B. 22
- C. 36
- D. 140
- 13. The equation of the straight line passing through the point (4,-5) and perpendicular to x+2y=3 is
 - A. 2x + y = -6.
- B. 2x + y = 3.
- C. 2x v = -14.
- D. 2x v = 13.
- 14. The graph of $y = (x-4)^2 49$ cuts the axes at points P, Q and R. Find the area of $\triangle POR$.
 - A. 132
- B. 231
- C. 343
- D. 462

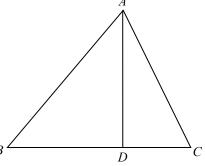

- 15. If the straight lines 6x+sy+12=0 and 2x-3y+t=0 have no intersection, then
 - A $s \neq -9$
 - B. s = -9 and t = 4.
 - C. s = -9 and $t \neq 4$.
 - D. s = -9 and t can be any real number.
- 16. The orthocentre of the triangle with vertices (3,1), (3,-2) and (-12,16) lies in
 - A. the first quadrant.
- B. the second quadrant.
- C. the third quadrant.
- D. the fourth quadrant.
- 17. In the figure, the equations of the straight lines L_1 and L_2 are ax + by = 1and cx + dv = 1respectively. Which of the following must be true?
 - I. b > d
 - II. ad > bc
 - A. I only
 - B. II only
 - C. I and II
 - D. None of them

- 18. For $0^{\circ} \le x < 360^{\circ}$, how many roots does the equation $\tan x \cos x = 1$ have?
 - A. 0
- B. 1
- C. 2
- D. 3
- 19. In $\triangle ABC$, AB = 4 cm, BC = 5 cm and CA = 6 cm.
 - A. $\frac{4}{5}$. B. $\frac{5}{4}$. C. $\frac{5}{6}$. D. $\frac{6}{5}$.

- 20. The minimum value of $\frac{1}{3\sin^2 r + 4\cos^2 r}$ is


- A. $\frac{1}{3}$. B. $\frac{1}{4}$. C. $\frac{1}{5}$. D. $\frac{1}{7}$.
- 21. In the figure, $\frac{AB}{4D}$ =
 - A. $\frac{\sin x}{\tan y}$.
 - $\frac{\cos x}{\tan y}$.
 - C. $\sin x \tan y$.
 - D. $\cos x \tan y$.

- 22. The cost of a toy is \$120. When the selling price of each toy is \$200, 60 toys would be sold in a week. It is known that the number of toys sold in a week would be increased by 2x if the selling price is reduced by x. Find the maximum profit in a week when the selling price is adjusted.
 - A. \$3025
- B. \$4800
- C. \$6050
- D. \$7300


- 23. If $2\log x \log y = 2$, then

 - A. 2x y = 2. B. 2x y = 100.
 - C. $x^2 = 2y$.
- D. $x^2 = 100y$.
- 24. In the figure, TA is a tangent to the circle ABCD at A . $\angle BAT = 52^{\circ}$, $\angle CBD = 44^{\circ}$ BC = CD, then $\angle ABD =$
 - A. 38°.
 - B. 40°.
 - C. 42°.
 - D. 46°.

- 25. In the figure, AB = BC = 169 cm and AC = 130 cm. D is a point on BC such that AD is perpendicular to BC. Find $\cos \angle BAD$.

 - D.

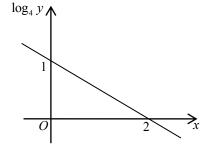
26. Which of the following is true?

A.
$$10^{6066} < 2022^{2022} < 10^{6067}$$

B.
$$10^{6067} < 2022^{2022} < 10^{6068}$$

C.
$$10^{6684} < 2022^{2022} < 10^{6685}$$

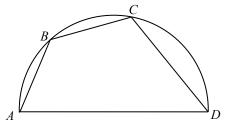
D.
$$10^{6685} < 2022^{2022} < 10^{6686}$$


27. The graph in the figure shows the linear relation between $\log_4 y$ and x. Which of the following is true?

A.
$$y = \frac{4}{2^x}$$

B.
$$y = \frac{16}{2^x}$$

C.
$$y = 4 \cdot 2^x$$


D. $y = 16 \cdot 2^x$

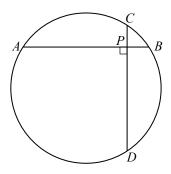
28. The figure shows a semi-circle

with
$$\widehat{AB}$$
: \widehat{BC} : \widehat{CD} = 4:5:6.
Find $\angle ABC$.

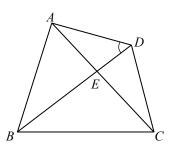
- A. 108°
- B. 126°
- 132°
- D. 144°

- 29. Let $i = \sqrt{-1}$. $i + i^2 + i^3 + \dots + i^{2023} =$
 - A. -1. B. 1.
- С. *-i* .
- D. i.

30. In the figure, $\angle ACB = 90^{\circ}$, D and E are points on AB and AC respectively such that B, C, E and D are concyclic. If AB = 90 cm, AC = 72 cmand CE = 42 cm, find DE.



- B. 15 cm
- C. 16 cm
- D. 18 cm


31. In the figure, two equal chords AB and CD intersect at P. If AP = 15 cm, BP = 3 cmand $AB \perp CD$, then the radius of the circle is

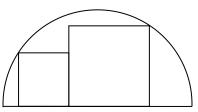
- B. $3\sqrt{13}$ cm.
- C. 12 cm.
- D. 15 cm.

- 32. In the figure, AC intersects BD at E, BD bisects $\angle ABC$, $\angle BAC = 71^{\circ}$, $\angle ABC = 70^{\circ}$ and $\angle BCD = 74^{\circ}$. Find $\angle ADB$.
 - A. 35°
 - B. 36°
 - C. 38°
 - D 39°

33. The coordinates of points A and B are (12,9) and (23,11) respectively. P and Q are two points on the straight line y = 2x such that AB = AP = AQ. The coordinates of the mid-point of P and Q are

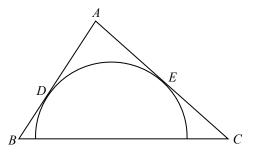
A. (2,4).

B. (6,12) . C. (9,18) .


- D. (10,20).
- 34. If α is a root of $x^2 2x + 3 = 0$, then $\alpha^3 =$

A. $\alpha-6$. B. $2\alpha-3$. C. $4\alpha-3$. D. $4\alpha-9$.

35. In the figure, squares with sides 3 cm and 5 cm are fitted inside the semi-circle. Find the area of the semi-circle.


- B. $17\pi \text{ cm}^2$
- C. $32\pi \text{ cm}^2$
- D. 34π cm²

36. The figure shows a semi-circle inscribed in $\triangle ABC$. AB = 40 cm, AC = 50 cm and BC = 60 cm, then BD =

- B. 13.5 cm.
- C. 15 cm.
- D. 16 cm.

END OF PAPER