Form 4 Time: 2 hours
Total marks: 100 marks

Answer ALL questions.

Unless otherwise specified, all working steps must be clearly shown.

Unless otherwise specified, numerical answers should either be exact or correct to 3 significant figures.

SECTION A(1) (33 marks)

1. Simplify $\frac{p^{-9}}{\left(p^{-3}q^4\right)^2}$ and express your answer with positive indices. (3 marks)

- 2. (a) Factorize $4x^2 9$.
 - (b) Factorize $4x^2 9 6xy + 9y$.

(3 marks)

- 3. It is given that $\frac{2y+3}{xy-2} = \frac{1}{x}$. Express x in terms of y. (3 marks)
- 4. Let $i = \sqrt{-1}$. Express $\frac{1+2i}{2-3i}$ in the form of a+bi, where a and b are real numbers. (3 marks)
- 5. The side lengths of two squares are differed by 4 cm and the sum of their areas is 80 cm². Find the side length of the smaller square. (4 marks)
- 6. Solve $4^{x+1} = 8^{2x}$. (3 marks)
- 7. The equation $x^2 + kx + k + 3 = 0$ has equal roots. Find the value(s) of k. (4 marks)
- 8. Let L_1 : x+2y+3=0 be a straight line. L_2 is another straight line parallel to L_1 and passes through (-2, 3).
 - (a) Find the equation of L_2 .
 - (b) Write down the x-intercept of L_2 .

(4 marks)

9. In Figure 1, ABCD is a circle and $\widehat{AB}:\widehat{BC}:\widehat{ADC}=2:3:4$. AC intersects BD at E.

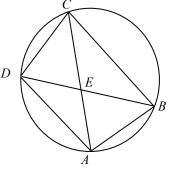
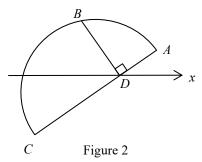



Figure 1

- (a) Find $\angle BAC$.
- (b) If BD is a diameter of the circle, find $\angle CEB$.

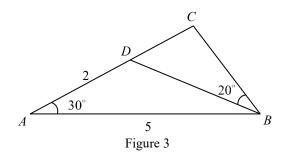
SECTION A(2) (33 marks)


- 10. It is given that α and β are the roots of the equation $2x^2 6x 7 = 0$.
 - (a) Find $\alpha^2 + \beta^2$.
 - (b) Form a quadratic equation in x with roots $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$.

(6 marks)

- 11. Solve $\log(2x+3) + \log(x+10) = 2$. (4 marks)
- 12. Solve $\sin(180^{\circ} + \theta) + 3\cos^{2}\theta = 1$ for $0^{\circ} \le \theta < 360^{\circ}$. (5 marks)
- 13. Let a, b and c be constants. When $2x^3 + ax^2 2x + 14$ is divided by $x^2 3x + 4$, the quotient is 2x + b and the remainder is -x + c. Find the values of a, b and c.

(5 marks)


14. In Figure 2, ABC is a semi-circle. AC cuts the x-axis at D and $BD \perp AC$. It is given that A = (44, 18) and B = (-4, 32).

- (a) Find the coordinates of D.
- (b) Find the coordinates of C.

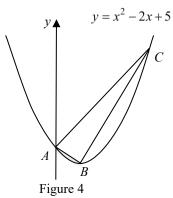
(8 marks)

15. In Figure 3, D is a point on AC. It is given that $\angle CBD = 20^{\circ}$, $\angle CAB = 30^{\circ}$, AB = 5 and AD = 2.

- (a) Find BD.
- (b) Find $\angle ACB$.

(5 marks)

SECTION B (34 marks)


- 16. Let $y = 16(10^{-3t})$.
 - (a) Express $\log y$ in the form a + bt where a and b are constants.
 - (b) Write down the slope of the graph of $\log y$ against t.

(3 marks)

- 17. (a) Show that 2x+3 is a factor of $4x^3-25x-24$.
 - (b) The population P (in million) of bacteria in a sample t hours after 13:00 is given by $P = \frac{4(2)^{3t} + 1}{2^t + 1}$ million where $0 \le t \le 10$. When will the number of bacteria reach 25 million? Express your answer to the nearest minute.

(7 marks)

18. In Figure 4, the graph of $y = x^2 - 2x + 5$ passes through A. B is the vertex of the graph. Let C(p, q) be a point on the graph.

- (a) Write down the coordinates of A.
- (b) Find the coordinates of B.
- (c) Express q in terms of p.
- (d) It is given that $AC \perp AB$.
 - (i) Find the coordinates of *C*.
 - (ii) Find the distance from A to BC.

(11 marks)

19. In Figure 5, AB is the common chord of circle ABCD and circle ABEF. AC intersects BD at G and AE intersects BF at BF. It is given that BF is tangent to circle ABCD. Let $\angle ABF = a$ and $\angle EBF = b$.

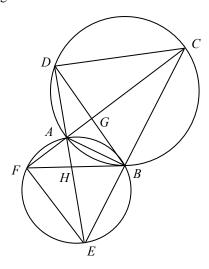


Figure 5

- (a) Show that $\angle CBD = b$.
- (b) Show that $\angle BDC = b$.

- (c) It is given that AHBG is cyclic.
 - (i) Find the value of b.
 - (ii) If $a = 45^{\circ}$ and AB = 4, find the area of quadrilateral ABCD.

(13 marks)

END OF PAPER