FINAL EXAMINATION, 2020 – 2021

Time allowed: 1 hour

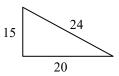
MATHEMATICS PAPER 2

Form 2

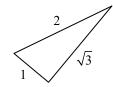
- **⋄** ANSWER ALL QUESTIONS.
- **⋄** The diagrams in this paper are not necessarily drawn to scale.
- **⋄** Use **HB pencil** to mark your answers on your MC answer sheet.

- 1.
 - 1 200 000. (correct to 3 significant figures) A.
- 1 210 000. (correct to 3 significant figures) B.
- C. 1 205 000. (correct to 3 significant figures)
- D. 1 204 000. (correct to 3 significant figures)
- 2. Which of the following is an irrational number?
 - A. 2π
- $\frac{2}{3}$
- C. sin 30°
- $\sqrt{144}$ D.

- $4x^2 y^2 =$ 3.
 - A. $(4x y)^2$.
- В. (4x-y)(4x+y).
- C. (2x-y)(2x+y).
- D. $(2x-y)^2$.
- What is the coefficient of x^2 in the expansion of the polynomial $(x-2)(x^2-x+3)$? 4.
 - A. -1
- В. -2
- D. 2


- 5.
- В. $2x^2$.
- C. 3x.
- D. 2x.
- The weight of a stone is measured to be 3.4 kg, correct to the nearest 0.1 kg. If its actual weight is a kg, find the range of values of a.
 - $3.4 < a \le 3.5$
- B. $3.4 \le a < 3.5$
- C. $3.35 < a \le 3.45$
- D. $3.35 \le a < 3.45$

- 7. Let $T_n = (n+1)(n-k)$, where k is a constant. If $T_1 = T_5$, find k.
 - A.
- B.
- C.


D.

8. Which of the following is/are right-angled triangle(s)?

I.

II.

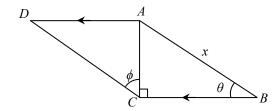
- I only A.
- В. II only
- C. I and II
- D. None of the above

- 9. If the point (2a, a) lies on the straight line y - 3x = 10, find a.
 - -10A.
- -2В.
- C. 2

10 D.

- $2^8 + 2^7 + 2^3 + 4 =$ 10.
 - 1 100 001 110₂.
- 1 100 001 100₂. В.
- 110 001 110₂. C.
- 110 001 1002. D.

In the figure, the 1st pattern consists of 1 stick. For any positive integer n, the (n + 1) th pattern is formed by adding 2n + 1sticks to the n th pattern. Find the number of sticks in the 6th pattern.


- A. 13
- B. 25
- C. 36
- D. 49

12.
$$\frac{2}{x-2} - \frac{3}{x-3} =$$

- A. $\frac{x}{(x-2)(x-3)}$. B. $\frac{x}{(x-2)(3-x)}$. C. $\frac{x+12}{(x-2)(x-3)}$.

- 13. In the figure, AD =
 - A. $x \tan \phi \cos \theta$.

- В. $x \tan \phi \sin \theta$.
- D. $\frac{x\sin\theta}{\tan\phi}$.

- 14. Simplify $\sqrt{108a} \sqrt{27a}$.
 - A. $9\sqrt{a}$
- B. $3\sqrt{3}a$
- C. 9*a*
- $3a\sqrt{3}$ D.

- 15. If $\begin{cases} 3a + 9b = 2 \\ a + 2b = -1 \end{cases}$, then a b = 0
 - A. –6.
- B. $-\frac{8}{3}$.
- D. 6.

- 16. Simplify $\tan \theta \cos (90^{\circ} \theta) + \cos \theta$.
 - A. $\frac{1}{\cos \theta}$
- B. $\cos \theta \sin \theta$
- C. $\cos \theta + \sin \theta$
- D. $2\cos\theta$

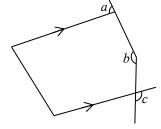
- 17. If $\tan \theta = a$, then $\sin \theta \cos \theta =$
 - A. $\frac{\sqrt{a^2-1}-1}{a}$. B. $\frac{1-\sqrt{a^2-1}}{a}$. C. $\frac{a-1}{\sqrt{a^2+1}}$.
- D. $\frac{1-a}{\sqrt{a^2+1}}$.

- 18. It is given that $z = \frac{xy y}{x + y}$, then y =
 - A. $\frac{zx}{x-z-1}$. B. $\frac{zx}{x-z+1}$.
- C. z-1.
- D. z+1.

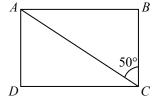
- 19. Simplify $\frac{27^{2y}}{3^{4y}}$.
 - 3 A.

- 9^{-2y} B.
- C. 9^y
- D. 3^y

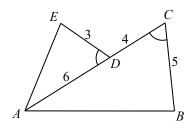
- 20. In a regular n-sided polygon, the sizes of an exterior angle and an interior angle are in the ratio of 1:8. Find n.
 - A. 9


- B. 12
- C. 15
- D. 18

- 21. If $\tan(2\theta 30^\circ) = \frac{1}{\tan(90^\circ \theta)}$, then $\theta =$
 - A. 10°.
- B. 15°.
- C. 20°.
- D. 30°.
- 22. It is given that the perimeter of a semicircle is 25 cm. Find the radius of the semicircle correct to 3 significant figures.
 - A. 3.02 cm
- B. 4.86 cm
- C. 6.04 cm
- D. 7.96 cm

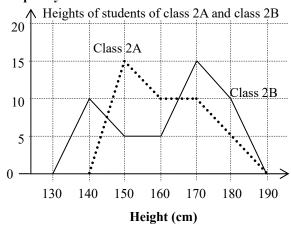

- 23. Which of the following is/are the factor(s) of $x^2 + x y^2 + y$?
 - I. x-y
 - II. x-y+1
 - A. I only
- B. II only
- C. I and II
- D. None of the above
- 24. It is given that A, B and C are constants. If $A(x-B)^2 = 4x^2 + 8x + C$, then C =
 - A. -16.
- B. 16.
- C. -4
- D. 4.
- 25. The radius of a circle is measured to be 5 cm, correct to the nearest 1 cm. Find the upper limit of the area of the circle correct to 3 significant figures.
 - A. 63.6 cm²
- B. 78.5 cm².
- C. 95.0 cm^2
- D. 113 cm²

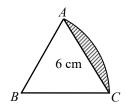
- 26. Refer to the figure, which of the following must be true?
 - A. $a + b + c = 360^{\circ}$
- B. $b + c a = 180^{\circ}$
- C. b = a + c

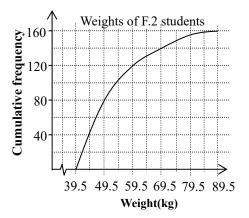

D. 2c = a + b

- 27. $\frac{5 \times 10^{2020} + 4 \times 10^{2021}}{2 \times 10^{-2019}} =$
 - A. 4.5×10^{2022} .
- B. 2.7×10^{4039} .
- C. 2.25×10^{4040} .
- D. 4.5×10^{6060}
- 28. In the figure, ABCD is a rectangle where $\angle ACB = 50^{\circ}$. It is given that the perimeter of ABCD is 8 cm. Find BC correct to 3 significant figures.
 - A. 1.83 cm
- B. 2.17 cm
- C. 3.65 cm
- D. 4.35 cm

- 29. The base area of a right circular cylinder is equal to its curve surface area. If the total surface area of the cylinder is 108π cm², its height is
 - A. 3 cm.
- B. $3\sqrt{3}$ cm.
- C. 6 cm.
- D. $3\sqrt{6}$ cm.
- 30. In the figure, it is given that $\angle C = \angle ADE$, DA = 6, CD = 4, ED = 3 and CB = 5. Which of the following must be true?
 - I. $\angle CDE = \angle CAB + \angle B$
 - II. $AB = 5\sqrt{3}$
 - A. I only
- B. II only
- C. I and II
- D. None of the above

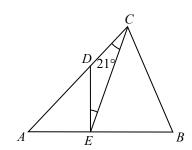

- 31. The frequency polygons show the heights of the students of two classes. Which of the following must be true?
 - I. The total number of students of class 2A is the same as that of class 2B.
 - II. The shortest student in class 2B is shorter than the shortest student in class 2A.
 - A. I only


B. II only


C. I and II

- D. None of the above
- 32. In the figure, B is the center of the sector ABC where AC = 6 cm. If ABC is an equilateral triangle, find the shaded area.
 - A. $3(4\pi 3) \text{ cm}^2$
- B. $3(4\pi 3\sqrt{3}) \text{ cm}^2$
- C. $3(2\pi 3) \text{ cm}^2$
- D. $3(2\pi 3\sqrt{3})$ cm²
- 33. The figure shows the weights of F.2 students. Which of the following statements is/are correct?
 - I. The lower quartile weight is 44.5 kg.
 - II. The median weight is 49.5 kg.
 - III. 87.5% of students weight at least 69.5 kg.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

Frequency



- 34. The costs of rice of brand A and brand B are \$70 / kg and \$100 / kg respectively. x kg of rice of brand A and y kg of rice of brand B are mixed so that the cost of the mixture is \$84 / kg. If x is greater than y by 2, then x =
 - A. 12.
- B. 14.
- C. 16.
- D. 18.
- 35. In the figure, AB = AC, BC = CE and AE = DE. If $\angle DCE = 21^{\circ}$, find $\angle CED$.
 - A. 21°

B. 23°

C. 25°

D. 27°

