

MATHEMATICS Extended Part Module 2 (Algebra and Calculus) Question—Answer Book

16th June, 2023 8:15 am – 9:45 am (1 hour 30 minutes) This paper must be answered in English

INSTRUCTIONS

- 1. Write your name, class and class number in the spaces provided on this cover.
- 2. This paper consists of TWO sections, A and B.
- 3. Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- 4. Unless otherwise specified, all working must be clearly shown.
- 5. Unless otherwise specified, numerical answers must be exact.
- 6. The diagrams in this paper are not necessarily drawn to scale.

Section	Marks
A Total	/ 46
B Total	/ 14
TOTAL	/ 60

FORMULAS FOR REFERENCE

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$2\sin A \cos B = \sin(A + B) + \sin(A - B)$$

$$2\cos A \cos B = \cos(A + B) + \cos(A - B)$$

$$2\sin A \sin B = \cos(A - B) - \cos(A + B)$$

$$\cos A + \cos B = 2\cos \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\cos A + \cos B = 2\cos \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\cos A - \cos B = -2\sin \frac{A + B}{2} \sin \frac{A - B}{2}$$

Answers written in the margins will not be marked

Section A (46 marks)

Let $\frac{d}{dx} \left(\sin \frac{x}{3} \right)$ from the first principles.	(4 marks)

Find	the value of n	and the coef	ficients of	x^3 .		sitive in
						(5 m

- 3. (a) Prove that $\csc 2\theta = \cot \theta \cot 2\theta$.
 - **(b)** Let $f(x) = \frac{3 + 2 \cot 4x}{\csc 8x + \cot 8x}$.
 - (i) Express f(x) in the form of $A \tan Bx + C$ where A, B and C are constants.

(ii) Solve the equation $f(x) = 5$, where $0 < x$	
	(:

4.	Let	$y = y = e^{2x} \sin x .$
	(a)	Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.
	(b)	Let k be a constant. If $\frac{d^2y}{dx^2} - k^2 \frac{dy}{dx} + (k+3)y = 0$ for all real values of x, find the value(s
		of k.
		(6 marks)
	-	
	-	
	-	

- (a) Prove that $\cos 3x = 4\cos^3 x 3\cos x$. **5.**
 - **(b)** Let $\frac{\pi}{2} < x < \pi$.
 - (i) Prove that $\frac{\cos 3\left(\frac{5\pi}{6} x\right)}{\cos\left(\frac{5\pi}{6} x\right)} = \frac{2\sin 3x}{\sin x \sqrt{3}\cos x}.$
 - (ii) Solve the equation $\frac{2\sin 3x}{\sin x \sqrt{3}\cos x} = 1$.

(8 ma

-

6.			duction, prove tha		
	$1^2 + 1 + 1$	$2^2 + 2 + 1$	$n^2 + n + 1$	_ 1	for all positive integers n .
	$\frac{1\times 2}{1}$	$+{2\times3}+.$	$\dots + \frac{n(n+1)}{n(n+1)} - n$	$\frac{+1-\frac{-}{m+1}}{n+1}$	for an positive integers n.

(I-)	II-i (-)1	$\sum_{100}^{100} k^2 + k + 1$
(D)	Using (a), evaluate	$\sum_{k=10}^{\infty} k(k+1)$

		(8 marks)

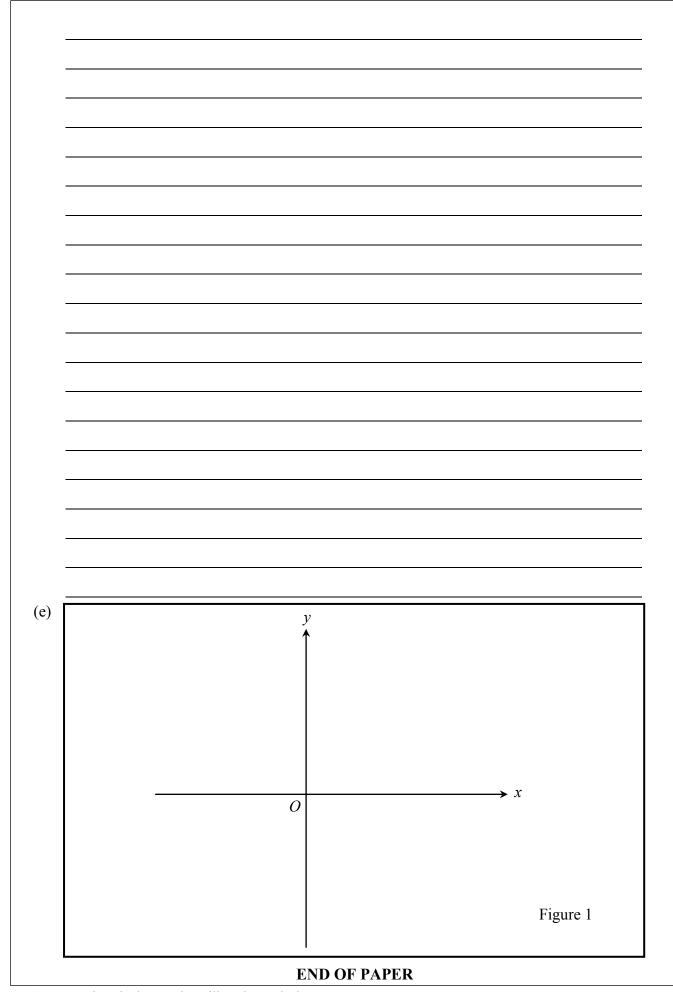
•		
-		

7.	Evaluate the following limits: (a) $\lim_{x \to \infty} \left(\frac{x}{x+3} \right)^x$	(b) $\lim_{x\to 0} \frac{e^{2x} - e^{-x}}{2x}$	(5 marks)

line $5x-3y+1=0$.	(5 :

the

	_
_	


Section B (14 marks)

- **9.** Let $f(x) = \frac{(x-1)^3}{x^2}$, where $x \neq 0$.
 - (a) Find the x- and y-intercept(s) of the graph of y = f(x). (1 mark)
 - **(b)** Find f'(x) and prove that $f''(x) = \frac{6(x-1)}{x^4}$ (3 marks)
 - (c) Find the maximum / minimum point(s) and point(s) of inflexion of the curve y = f(x).

(4 marks)

- (d) Find all the asymptote(s) of the graph of y = f(x). (3 marks)
- (e) Sketch the graph of y = f(x) in Figure 1 on Page 14. (3 marks)

-	· · · · · · · · · · · · · · · · · · ·

