Chapter 13

Matrices and Systems of Linear Equations

Exercise 13A

Level 1

- 1. It is given that $A = \begin{pmatrix} 3 & 7 & 8 \\ 2 & x & 5 \end{pmatrix}$ and $B = \begin{pmatrix} z & 7 & y \\ 2 & 2x 1 & 5 \end{pmatrix}$. If A = B, find the values of x, y and z.
- 2. Evaluate each of the following expressions

$$\begin{array}{cc} \textbf{(a)} & 2 \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} - \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} \end{array}$$

(b) $3\begin{pmatrix} 1 & 3 & 2 \\ 2 & 5 & -2 \end{pmatrix} + 2\begin{pmatrix} 0 & 2 & -1 \\ 1 & 0 & 2 \end{pmatrix}$

(*) Out syl after HKDSE 2022

Properties of determinants:

3. Evaluate each of the following expressions.

(a)
$$\begin{pmatrix} 7 & -2 \\ -1 & 3 \end{pmatrix} + 2 \begin{pmatrix} 2 & 1 \\ -2 & -3 \end{pmatrix}$$

(b)
$$5 \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} - 2 \begin{pmatrix} 3 \\ 2 \\ -5 \end{pmatrix}$$

- **4.** Let $A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$ and $C = \begin{pmatrix} 2 & -2 \\ -1 & 4 \end{pmatrix}$.
 - (a) Find A + B.
 - **(b)** Find 2A B + C.
- 5. Let $P = \begin{pmatrix} 2 & 0 \\ 1 & -1 \\ 0 & 1 \end{pmatrix}$, $Q = \begin{pmatrix} 0 & 1 \\ 3 & 2 \\ 2 & -1 \end{pmatrix}$ and $R = \begin{pmatrix} 1 & 0 \\ 2 & 0 \\ -2 & 5 \end{pmatrix}$.
 - (a) Find 3P + Q 2R.
 - **(b)** Find 2P Q + 2R R + P + 3Q 4R.

$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = - \begin{vmatrix} c_1 & b_1 & a_1 \\ c_2 & b_2 & a_2 \\ c_3 & b_3 & a_3 \end{vmatrix}$$

$$\begin{vmatrix} a_1 & b_1 & 0 \\ a_2 & b_2 & 0 \\ a_3 & b_3 & 0 \end{vmatrix} = 0$$

$$\begin{vmatrix} a_1 & kb_1 & c_1 \\ a_2 & kb_2 & c_2 \\ a_3 & kb_3 & c_3 \end{vmatrix} = k \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$\begin{vmatrix} a_1 & b_1 & kb_1 \\ a_2 & b_2 & kb_2 \\ a_3 & b_3 & kb_3 \end{vmatrix} = 0$$

$$\begin{vmatrix} a_1 + a_1' & b_1 & c_1 \\ a_2 + a_2' & b_2 & c_2 \\ a_3 + a_3' & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} + \begin{vmatrix} a_1' & b_1 & c_1 \\ a_2' & b_2 & c_2 \\ a_3' & b_3 & c_3 \end{vmatrix}$$

$$\begin{vmatrix} a_1 + kb_1 & b_1 & c_1 \\ a_2 + kb_2 & b_2 & c_2 \\ a_3 + kb_3 & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_4 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & c_1 \\ b_3 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix}$$

6.Evaluate
$$\begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix} - \frac{1}{3} \begin{pmatrix} 6 & 0 & 9 \\ -3 & 3 & 0 \\ 27 & 18 & 15 \end{pmatrix} + 4 \begin{pmatrix} 2 & 0 & 0 \\ \frac{1}{2} & 0 & -\frac{1}{4} \\ -1 & 1 & \frac{1}{2} \end{pmatrix}$$
.

7. Let
$$A = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 and $B = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$. Find the matrix C such that $A - C = B$.

8.Let
$$P = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}$$
 and $Q = \begin{pmatrix} 0 & 1 \\ 1 & -2 \end{pmatrix}$. Find the matrix R such that $P - R = 2Q$.

9. It is given that
$$A = \begin{pmatrix} x^2 + 1 & 4 \\ -1 & y \end{pmatrix}$$
 and $B = \begin{pmatrix} 2x & 4 \\ -1 & 2x \end{pmatrix}$. If $A = B$, find the values of x and y.

10. Let
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 1 & -1 \end{pmatrix}$$
. Find the values of a , b , c and d .

11. Let
$$\begin{pmatrix} x & 1 \\ 1 & y \end{pmatrix} + \begin{pmatrix} 1 & 4 \\ 2 & 2y \end{pmatrix} = \begin{pmatrix} y & 5 \\ 3 & 9 \end{pmatrix}$$
. Find the values of x and y.

12. Let
$$\begin{pmatrix} x & -1 \\ 2x & 3x \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 2y & -1 \\ 4y & 4y \end{pmatrix}$$
. Find the values of x and y.

13. Evaluate
$$\begin{pmatrix} \sin^2 \theta & -\tan^2 \theta \\ \cos \theta & 0 \end{pmatrix} + \begin{pmatrix} \cos^2 \theta & \sec^2 \theta \\ \sin(\frac{3\pi}{2} - \theta) & 0 \end{pmatrix}$$
.

- 14. For $m \times n$ matrices A, B and scalar λ , show that $\lambda(A \pm B) = \lambda A \pm \lambda B$.
- 15. For $m \times n$ matrix A and scalars λ , μ , show that $(\lambda \pm \mu)A = \lambda A \pm \mu A$.

- **16.** Let A and B be 2×2 matrices. If $A + B = \begin{pmatrix} 3 & 3 \\ 4 & 5 \end{pmatrix}$ and $A B = \begin{pmatrix} 1 & -1 \\ -2 & 1 \end{pmatrix}$, find A and B.
- **17.** Let *P* and *Q* be 2×3 matrices. If $P + 2Q = \begin{pmatrix} 1 & 2 & 4 \\ 0 & 5 & 1 \end{pmatrix}$ and $P Q = \begin{pmatrix} 1 & -1 & 1 \\ 0 & -1 & 1 \end{pmatrix}$, find *P* and *Q*.

E XERCISE 13B

- **18.** Let $A = \begin{pmatrix} 2 & 6 \end{pmatrix}$ and $B = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$. Find the following products of matrices.
 - (a) AB
 - **(b)** *BA*
- **19.** Let $A = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}$. Find the following products of matrices.
 - (a) AB
 - **(b)** *BA*
- **20.** Evaluate $\begin{pmatrix} 1 & 2 & 1 \\ 0 & -1 & 3 \end{pmatrix} \begin{pmatrix} 0 & 3 \\ 1 & 3 \\ 0 & 4 \end{pmatrix}$.
- **21.** Evaluate $\begin{pmatrix} 1 & 1 & 3 \\ -1 & 0 & 2 \\ 0 & 3 & 1 \end{pmatrix} \begin{pmatrix} 0 & 2 & -1 \\ 1 & 1 & 4 \\ 3 & 0 & -1 \end{pmatrix}.$
- **22.** Evaluate $\begin{pmatrix} 2 & 4 & -1 \\ 1 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.
- 23. Let $\begin{pmatrix} 2 & x & 0 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 4 & 1 \\ 1 & 0 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 11 & 2 \\ 8 & y \end{pmatrix}$. Find the values of x and y.

24. Let
$$P = \begin{pmatrix} x & -y \\ y & x \end{pmatrix}$$
 and $Q = \begin{pmatrix} m & -n \\ n & m \end{pmatrix}$. Prove that $PQ = QP$.

25. Let
$$A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$.

- (a) Find A + 2B.
- **(b)** If $(A + 2B) \begin{pmatrix} x \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ y \end{pmatrix}$, find the values of x and y.
- **26.** Let $\begin{pmatrix} 3 & 6 \\ x & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 2x & 2 \end{pmatrix} = \begin{pmatrix} 2y & y \\ 4x & x+2 \end{pmatrix}$. Find the values of x and y.
- **27.** Let $\begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & -1 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 0 & 5 \\ 1 & x \end{pmatrix} = \begin{pmatrix} 4 & 8 x \\ y 2z & y \end{pmatrix}$. Find the values of x, y and z.

28. Let
$$A = \begin{pmatrix} 0 & x \\ y & z \end{pmatrix}$$
 and $A \begin{pmatrix} 8 \\ 4 \end{pmatrix} = \begin{pmatrix} 8 \\ 52 \end{pmatrix}$.

- (a) Find the value of x.
- **(b)** Prove that 2y + z = 13. Also, if y + z = 8, find A.

(b) Hence find
$$\begin{pmatrix} \cos 45^{\circ} & -\sin 45^{\circ} \\ \sin 45^{\circ} & \cos 45^{\circ} \end{pmatrix} \begin{pmatrix} \cos 45^{\circ} & -\sin 45^{\circ} \\ \sin 45^{\circ} & \cos 45^{\circ} \end{pmatrix}$$
.

30. Let
$$A = \begin{pmatrix} x & 1 \\ -1 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} y & 4 \\ 1 & x \end{pmatrix}$ and $C = \begin{pmatrix} 7 & 15 \\ -y & z \end{pmatrix}$. If $AB = C$, find C .

31. Let
$$A = \begin{pmatrix} 2 & -1 & 3 \\ x & 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 \\ y & 0 \\ 1 & 3 \end{pmatrix}$, $C = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}$ and $D = \begin{pmatrix} 21 & 24 \\ 4y & z \end{pmatrix}$. If $ABC = D$, find D .

32. Find each of the following products of matrices.

$$\begin{array}{ccc} \textbf{(a)} & \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 7 \\ -1 & 3 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 2 & 0 & 1 \\ 1 & 4 & 2 \\ 3 & -1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

33. Find each of the following products of matrices.

$$\begin{array}{ccc} \textbf{(a)} & \begin{pmatrix} 7 & 8 \\ 9 & 10 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{array}$$

(b)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 7 & 2 & 4 \\ -1 & 8 & -9 \\ 11 & 5 & 2 \end{pmatrix}$$

34. In each of the following, find the product of matrices. Hence show that the two matrices are the inverses of each other.

(a)
$$\begin{pmatrix} 13 & 3 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & -3 \\ -4 & 13 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 2 & 1 & -1 \\ -3 & 2 & 1 \\ 0 & 5 & 0 \end{pmatrix} \begin{pmatrix} -1 & -1 & \frac{3}{5} \\ 0 & 0 & \frac{1}{5} \\ -3 & -2 & \frac{7}{5} \end{pmatrix}$$

35. (a) Find
$$\begin{pmatrix} 7 & 9 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 4 & -9 \\ -3 & 7 \end{pmatrix}$$
.

(b) Hence find
$$\begin{pmatrix} 7 & 9 \\ 3 & 4 \end{pmatrix}^{-1}$$
 and $\begin{pmatrix} 4 & -9 \\ -3 & 7 \end{pmatrix}^{-1}$.

- **36.** (a) Find $\begin{pmatrix} 3 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & -2 \end{pmatrix}$.
 - **(b)** Hence find $\begin{pmatrix} 3 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix}^{-1}$ and $\begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & -2 \end{pmatrix}^{-1}$.
- **37.** Find $\begin{pmatrix} 1 & 0 \\ -3 & 2 \end{pmatrix}^3$.
- **38.** Find $\begin{pmatrix} 4 & -1 \\ 3 & 0 \end{pmatrix}^4$.

- **39.** (a) Prove that $\begin{pmatrix} k & 1 \\ 1 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & -k \end{pmatrix}$.
 - **(b)** Hence find $\begin{pmatrix} 8 & 1 \\ 1 & 0 \end{pmatrix}^{-1}$.
- **40.** Let $A = \begin{pmatrix} 2 & 1 \\ 1 & -2 \end{pmatrix}$.
 - (a) Find A^2 .
 - **(b)** Hence find A^{-1} .
 - (c) Find $(A^{-1})^2$.
- **41.** Let $A = \begin{pmatrix} x & 1 \\ 1 & y \end{pmatrix}$. If $A^2 = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}$, find the values of x and y.
- **42.** Let $A = \begin{pmatrix} 4 & x \\ 1 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & -3 \\ -1 & y \end{pmatrix}$.
 - (a) Find AB.
 - **(b)** If B is the inverse of A, find the values of x and y.

- **43.** Let $A = \begin{pmatrix} 3 & x \\ 4 & -1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & y \\ 4 & -3 \end{pmatrix}$.
 - (a) Find AB.
 - **(b)** If B is the inverse of A, find the values of x and y.
- **44.** Let $A = \begin{pmatrix} 5 & 2 \\ -3 & 1 \end{pmatrix}$. Find the values of p and q such that $A^2 + pA + qI = \mathbf{0}$.
- **45.** Let $A = \begin{pmatrix} m & 0 \\ 0 & -m \end{pmatrix}$, where $m \neq 0$.
 - (a) Prove that $A^2 m^2 I = 0$.
 - **(b)** Hence prove that $A^3 + A^2 4A 4I = (m^2 4)A + (m^2 4)I$.
 - (c) If $A^3 + A^2 4A 4I = 0$, find A.
- **46.** Let $A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$.
 - (a) Prove that $A^2 4A + 3I = 0$.
 - **(b)** Find A^{-1} .
- **47.** Let $A = \begin{pmatrix} 2 & 3 \\ 5 & 3 \end{pmatrix}$. Find A^{-1} .
- **48.** Prove, by mathematical induction, that for all positive integers n, $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}^n = \begin{pmatrix} a^n & 0 \\ 0 & b^n \end{pmatrix}$.

- **49.** Prove, by mathematical induction, that for all positive integers n, $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}^n = \begin{pmatrix} 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \end{pmatrix}$.
- 50. (a) Prove, by mathematical induction, that for all positive integers n,

$$\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}^n = \begin{pmatrix} \cos n\theta & \sin n\theta \\ -\sin n\theta & \cos n\theta \end{pmatrix}.$$

- **(b)** Find $\begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}^{2010}$.
- **51.** Let A be a square matrix such that $A^2 2A I = 0$. Prove that A is a non-singular matrix.

E XERCISE 13D

Level 1

52. Let
$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 3 \end{pmatrix}$$
. Find AA^T and A^TA .

53. Let
$$A = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 2 & 1 \end{pmatrix}$$
. Find AA^T and A^TA .

54. Let
$$A = \begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix}$$
. Find AA^T and A^TA .

55. Let
$$A = (2 - 1 \ 3)$$
. Find AA^T and A^TA .

- **56.** It is given that A, B, C and D are square matrices, where $AB^TC = D^2$, |A| = 3, |C| = 6 and |D| = 12. Find the value of |B|.
- 57. It is given that A, B, C and D are square matrices, where $AB^{-1} = C^3D^T$, |A| = 48, |B| = 2 and |D| = 3. Find the value of |C|.
- **58.** It is given that P, Q and R are square matrices of order 2, where $P^2Q^T = R$, PQ = 2I and |Q| = 4. Find the values of |P| and |R|.
- **59.** It is given that P, Q and R are square matrices of order 2, where R is invertible, $P^2R = PQ^T$, $P^{-1}Q = \sqrt{3}I$ and |Q| = 15. Find the values of |P| and $|R^{-1}|$.
- **60.** Find the value of the determinant of each of the following matrices.

$$\mathbf{(a)} \quad A = \begin{pmatrix} 1 & 2 \\ 4 & 8 \end{pmatrix}$$

(b)
$$B = \begin{pmatrix} 1 & 2 & 2 \\ 0 & 0 & 1 \\ 3 & -1 & 0 \end{pmatrix}$$

61. Find the adjoint matrix of each of the following matrices.

$$\mathbf{(a)} \quad A = \begin{pmatrix} 2 & 3 \\ -1 & 4 \end{pmatrix}$$

(b)
$$A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 3 \\ 0 & 1 & 4 \end{pmatrix}$$

62. Find the adjoint matrix of each of the following matrices.

$$\mathbf{(a)} \quad A = \begin{pmatrix} 5 & -2 \\ 1 & -3 \end{pmatrix}$$

(b)
$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix}$$

- **63.** Find the inverse of $B = \begin{pmatrix} 7 & 4 \\ 5 & 3 \end{pmatrix}$.
- **64.** Find the inverse of $B = \begin{pmatrix} 9 & 1 \\ 8 & 1 \end{pmatrix}$.
- **65.** Find the inverse of $B = \begin{pmatrix} 2 & -3 \\ 4 & 7 \end{pmatrix}$.
- **66.** Find the inverse of $B = \begin{pmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{pmatrix}$.
- **67.** Find the inverse of $B = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \\ 2 & 3 & 2 \end{pmatrix}$.
- **68.** Find the inverse of $B = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 2 & 1 \\ 5 & 5 & 3 \end{pmatrix}$. **69.** Find the inverse of $B = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 2 & 3 \\ 4 & 0 & 2 \end{pmatrix}$.
- **70.** Find the inverse of $B = \begin{pmatrix} 3 & -1 & 4 \\ 2 & 1 & 3 \\ 4 & 2 & 1 \end{pmatrix}$.
- **71.** Find the inverse of $B = \begin{pmatrix} -2 & 5 & 2 \\ 4 & 2 & 1 \\ -3 & 1 & 1 \end{pmatrix}$.

72. Let
$$P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \end{pmatrix}$$
 and $Q = PP^{T}$. Find Q^{-1} .

73. Let
$$A = \begin{pmatrix} 0 & 2 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & 4 \end{pmatrix}$$
 and $B = A^T A$. Find B^{-1} .

74. Let
$$A = \begin{pmatrix} 2 & -4 \\ -2 & 5 \end{pmatrix}$$
. Find $A^{-1} + 2(A^2)^{-1}$.

75. Let
$$A = \begin{pmatrix} 2 & x \\ 2 & y \end{pmatrix}$$
 and $B = \begin{pmatrix} 2 & 1 \\ 2 & 3 \end{pmatrix}$.

- (a) If $\det A = \det B$, express y in terms of x.
- **(b)** If AP = P, find A for each of the following conditions.

(i)
$$P = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

(ii)
$$P = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

76. If the value of the determinant of
$$\begin{pmatrix} 3 & 2 & -1 \\ -1 & 1 & 2x \\ x & 0 & 1 \end{pmatrix}$$
 is 8, find the values of x.

77. It is given that
$$A = \begin{pmatrix} 6 & a \\ 3 & 4 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & b \\ 3 & 6 \end{pmatrix}$, where A and B are singular matrices.

- (a) Find the values of a and b.
- **(b)** Find $(A B)^{-1}$.

78. It is given that
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, where $A \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ and $A \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 24 \\ 5 \end{pmatrix}$.

- (a) Find the values of a, b, c and d.
- **(b)** Find A^{-1} .

79. Let
$$A = \begin{pmatrix} 6 & 4 \\ a & 4 + \frac{a}{2} \end{pmatrix}$$
.

- (a) If A is a singular matrix, find the value of a.
- **(b)** Is A^2 invertible?

80. Let
$$A = \begin{pmatrix} 5 & -3 \\ a & -a - 2 \end{pmatrix}$$
.

- (a) If A is a singular matrix, find the value of a.
- **(b)** Is A^2 invertible?
- **81.** If $AA^T = \begin{pmatrix} 9 & 6 \\ 6 & 4 \end{pmatrix}$ and the dimensions of A are 2×1 , find A.
- 82. If $AA^T = \begin{pmatrix} 16 & -4 \\ -4 & 1 \end{pmatrix}$ and the dimensions of A are 2×1 , find A.
- **83.** Let A and B be two non-singular square matrices of order n. If $A^T = A^{-1}$, prove that $(ABA^T)^{-1} = AB^{-1}A^T$.

- **84.** Let A and B be two non-singular square matrices of order n.
 - (a) Prove that $A^{-1}BA$ is a non-singular matrix.
 - **(b)** Simplify $(A^{-1}BA)^{-1}$.
- **85.** Let A and B be two non-singular square matrices of order n.
 - (a) Prove that A^TBA is a non-singular matrix.
 - **(b)** Simplify $(A^T B A)^T$.
- (*) 86. If x_1 , x_2 , x_3 , x_4 , x_5 , x_6 , x_7 , x_8 , x_9 form an arithmetic sequence, prove that $\begin{pmatrix} x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 \\ x_7 & x_8 & x_9 \end{pmatrix}$ is not invertible.
 - **87.** Let $A = \begin{pmatrix} 2 & 2 \\ 1 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & -2 \\ 0 & 1 \end{pmatrix}$.
 - (a) Find $A^{-1}BA$.
 - **(b)** It is given that for all positive integers n, $\begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix}^n = \begin{pmatrix} p^n & 0 \\ 0 & q^n \end{pmatrix}$, where p and q are real numbers. Find $B^{2\ 010}$.

88. Let
$$A = \begin{pmatrix} k & 1 \\ 1 & k \end{pmatrix}$$
 and $B = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$.

- (a) Find B^{-1} .
- **(b)** Prove that $B^{-1}AB = \begin{pmatrix} k + \sin 2\theta & \cos 2\theta \\ \cos 2\theta & k \sin 2\theta \end{pmatrix}$.
- (c) If k = 2, find the values of θ , x and y such that $B^{-1}AB = \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}$, where $0 < \theta < \frac{\pi}{2}$.
- (d) It is given that for all positive integers n, $\begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix}^n = \begin{pmatrix} p^n & 0 \\ 0 & q^n \end{pmatrix}$, where p and q are real number. According to the values obtained in (c), find A^9 .

EXERCISE 13E

- **89.** Solve the system $\begin{cases} x y = 2 \\ 6x 5y = 3 \end{cases}$ by inverse matrix.
- **90.** Solve the system $\begin{cases} 3x 2y = 1 \\ x 3y = 5 \end{cases}$ by inverse matrix.
- 91. Solve the system $\begin{cases} 2x + y = 1 \\ 3x 4y = 7 \end{cases}$ by inverse matrix.
- 92. Solve the system $\begin{cases} 3x + y = 4 \\ 4x 2y = -3 \end{cases}$ by inverse matrix.
- 93. Solve the system $\begin{cases} x + 2y z = 5 \\ x y + 2z = 2 \text{ by inverse matrix.} \\ x 3y = -4 \end{cases}$

94. Solve the system
$$\begin{cases} x + 2y + 2z = 5 \\ x - y - 3z = -2 \text{ by inverse matrix.} \\ x - 2y - 2z = 1 \end{cases}$$

95. Solve the system
$$\begin{cases} 2x - 2y - z = -1 \\ 3x - 2y + 3z = -1 \text{ by inverse matrix.} \\ x - y + 2z = -3 \end{cases}$$

96. Solve the system
$$\begin{cases} 4x - 3y - 2z = -1\\ 2x - 6y + 3z = 2 \text{ by inverse matrix.} \\ 2x - 9y + 5z = 3 \end{cases}$$

97. Solve the system
$$\begin{cases} x - 2y + z = 2 \\ -x + y - z = 1 \text{ by Gaussian elimination.} \\ x + 3z = 5 \end{cases}$$

98. Solve the system
$$\begin{cases} 3x - 2y + 5z = -2 \\ 2x + 3y - 4z = -3 \text{ by Gaussian elimination.} \\ x + y - z = -1 \end{cases}$$

99. Solve the system
$$\begin{cases} 4x - y + 3z = 12 \\ x + 2y + 4z = 5 \text{ by Gaussian elimination.} \\ x - 3y - 5z = -3 \end{cases}$$

100. Solve the system
$$\begin{cases} 2x + 2y - 5z = -6 \\ 2x + 5y - 2z = 9 \text{ by Gauss-Jordan elimination.} \\ x + 4y + z = 13 \end{cases}$$

101. Solve the system
$$\begin{cases} x + y = 3 \\ 2x - y + z = 6 \end{cases}$$
 by Gauss-Jordan elimination.
$$\begin{cases} 3x - 2y + 2z = 10 \\ 5x + 4y + 2z = -2 \end{cases}$$

102. Solve the system
$$\begin{cases} 4x + 2y + 3z = 8 & \text{by Gauss-Jordan elimination.} \\ 2x - 5y - z = -5 \end{cases}$$

103. Solve the system
$$\begin{cases} x - y + z = 2 \\ 2x - y + 3z = 5 \\ 3x - 2y + 4z = 9 \end{cases}$$

104. Solve the system
$$\begin{cases} x + z = 1 \\ y + z = 1 \\ x + y + 2z = 2 \end{cases}$$

104. Solve the system
$$\begin{cases} x + z = 1 \\ y + z = 1 \\ x + y + 2z = 2 \end{cases}$$
105. Solve the system
$$\begin{cases} x + 2y - z = 1 \\ 2x + 5y - z = 3 \\ x + 3y = 2 \end{cases}$$

106. If the system
$$\begin{cases} x - 5y + 4z = 1\\ 2x - y - z = -1 \text{ has infinitely many solutions, find the value of } h.\\ x - 3y + 2z = h \end{cases}$$

Level 2

106. If the system
$$\begin{cases} x - 5y + 4z = 1 \\ 2x - y - z = -1 \text{ has infinitely many solutions, find the value of } h. \\ x - 3y + 2z = h \end{cases}$$
107. If the system
$$\begin{cases} x - 2y + 3z = 2 \\ 2x - y + z = h \text{ has infinitely many solutions, find the values of } h \text{ and } k. \\ x + y + kz = 3 \end{cases}$$

108. Find the values of k such that the following homogeneous linear system has non-trivial solutions.

$$\begin{cases} 6x + y - kz = 0 \\ 4x + y - 3z = 0 \\ (k+4)x + 5z = 0 \end{cases}$$

109. Find the values of k such that the following homogeneous linear system has non-trivial solutions.

$$\begin{cases}
-x + (k+2)y - 6z = 0 \\
kx + 3y + 4z = 0 \\
x + 7y - 2z = 0
\end{cases}$$

(*) 110. (a) Prove that
$$\begin{vmatrix} a^2 & b^2 & c^2 \\ a & b & c \\ 1 & 1 & 1 \end{vmatrix} = (a-b)(b-c)(a-c).$$

(b) Consider the following linear systems (where a, b, c and k are real numbers):

(*)
$$\begin{cases} a^2x + b^2y + c^2z = 0\\ ax + by + cz = 0\\ x + y + z = 0 \end{cases}$$
 and (**)
$$\begin{cases} a^2x + b^2y + c^2z = k^2\\ ax + by + cz = k\\ x + y + z = 1 \end{cases}$$

- (i) Find the conditions of a, b and c such that (*) has non-trivial solutions.
- (ii) Find the conditions of a, b and c such that (**) has a unique solution.

111. Consider the linear system (*)
$$\begin{cases} x - 2y + z = 2 \\ 2x - y + 5z = 13, \text{ where } p \text{ and } q \text{ are real numbers.} \\ x - y + pz = q \end{cases}$$

- (a) If (*) has infinitely many solutions, find the values of p and q.
- (b) According to the values of p and q obtained in (a), find the solutions of (*).

112. Consider the homogeneous linear system (*)
$$\begin{cases} 2x + (a-1)y - z = 0 \\ ax + 3y - 4z = 0 \\ -2x + 2y + z = 0 \end{cases}$$
, where a is a real number.

- (a) Find the values of a such that (*) has non-trivial solutions.
- **(b)** According to the values of a obtained in (a), find the solutions of (*).

113. Consider the homogeneous linear system (*)
$$\begin{cases} kx - y + z = 0 \\ 7x + 5y + kz = 0, \text{ where } k \text{ is a real number.} \\ x + y = 0 \end{cases}$$

- (a) Find the values of k such that (*) has non-trivial solutions.
- (b) According to the values of k obtained in (a), find the solutions of (*).

114. Consider the linear system (*)
$$\begin{cases} 2x + y + 3z = kx \\ x - 2y + z = ky \end{cases}$$
, where k is an integer.
$$3x - y + 4z = kz$$

- (a) Rewrite (*) as a homogeneous linear system (**).
- (b) Find the value of k such that (**) has non-trivial solutions. Then solve (**) for the value of k obtained.

115. Consider the linear system (*)
$$\begin{cases} x + az = b \\ 2x - y - z = 0 \\ -x + ay + 2z = 1 \end{cases}$$
, where a and b are real numbers.

- (a) Find the range of values of a such that (*) has a unique solution. Solve (*) when it has a unique solution.
- (b) Let a = -1. Find the value of b such that (*) has solutions. Solve (*) for the value of b obtained.
- (c) Suppose that (x, y, z) satisfies $\begin{cases} x + z = 1 \\ 2x y z = 0 \end{cases}$. Find the least value of $x^2 y + z$ and the corresponding values of x, y, z.
- (*) 116. Consider the following linear systems (where a, b and c are distinct real numbers and $ab + bc + ac \neq 0$):

$$\begin{cases} x + a^2y + a^3z = 0 \\ x + b^2y + b^3z = 0 \text{ and } (**) \\ x + c^2y + c^3z = 0 \end{cases} \begin{cases} x + a^2y + a^3z = 1 + a^2 + a^3 \\ x + b^2y + b^3z = 1 + b^2 + b^3 \\ x + c^2y + c^3z = 1 + c^2 + c^3 \end{cases}$$

- (a) Prove that (*) has no non-trivial solutions.
- **(b)** Find the solution of (**).