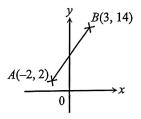
S.3 Mathematics
Chapter 08 - Coordinate Geometry - Note

Name:	Class:()	Date:
-------	-----------	-------


Distance Formula

The distance between any two points $A(x_1, y_1)$ and $B(x_2, y_2)$ on a rectangular coordinate plane is give by

$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

1. In the figure, the coordinates of A and B are (-2, 2) and (3, 14) respectively. Find the distance between A and B.

2. In each of the following, find the distance between the given points.

(Leave the answers in surd form if necessary.)

(a)
$$A(11, 3), B(8, -1)$$

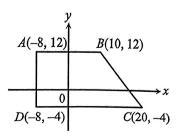
(b)
$$C(3, -2), D(-1, 6)$$

mathspercyyeung
$$C = 2\pi r$$

$$A = \pi r^{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

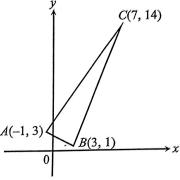

$$\frac{1}{2}$$

$$\frac{1}{2}$$

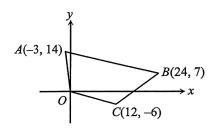
$$\frac{1}{2}$$

(c) E(-4, 13), F(5, 7)

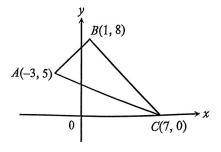
3. In the figure, A(-8, 12), B(10, 12), C(20, -4) and D(-8, -4) are the vertices of trapezium ABCD. Find the perimeter of trapezium ABCD, correct to 3 significant figures.

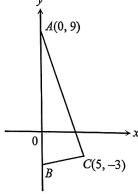


4. In the figure, A(-4, -1), B(3, 4) and C(1, -1) are the vertices of $\triangle ABC$. Find the perimeter of $\triangle ABC$, correct to 3 significant figures.


5. It is given that P(3, 8), Q(-4, -3) and R(5, 2) are vertices of $\triangle PQR$. Find the perimeter of $\triangle PQR$, correct to 3 significant figures.

Name:	Class:	(Date:
		`	Date.


1. In the figure, A(-1, 3), B(3, 1) and C(7, 14) are vertices of $\triangle ABC$. Show that $\triangle ABC$ is an isosceles triangle.

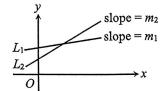

2. In the figure, OABC is a quadrilateral, where O is the origin. The coordinates of A, B and C are (-3, 14), (24, 7) and (12, -6) respectively. Determine whether the diagonals OB and AC are equal.

- 3. In the figure, A(-3, 5), B(1, 8) and C(7, 0) are vertices of $\triangle ABC$.
 - (a) Show that $\triangle ABC$ is a right-angled triangle.
 - (b) Using the result of (a), find the area of $\triangle ABC$.

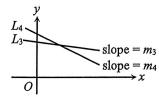
- 4. In the figure, A and B lie on the y-axis and AB = AC. The coordinates of A and C are (0, 9) and (5, -3) respectively.
 - (a) Find the coordinates of B.
 - **(b)** Find the area of $\triangle ABC$.

* T	
Name:	
T. ACTITIO!	

Class:____()

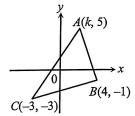

Date:____

Slope Formula


Consider a straight line L passing through the points $A(x_1, y_1)$ and $B(x_2, y_2)$, where $x_1 \neq x_2$. Then the slope m of L is given by

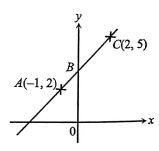
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

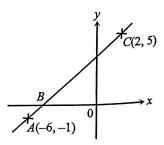
2. (a) If $m_2 > m_1 > 0$, then L_2 is steeper L_1 .



(b) If $0 > m_3 > m_4$, then L_4 is steeper L_3 .

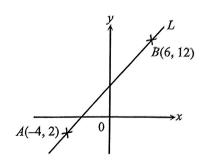
- 1. In each of the following, find the slope of the straight line passing through the given points.
 - (a) A(-3, 6), B(9, 2)
 - **(b)** C(14, 8), D(-10, -16)


- 2. In the figure, A(k, 5), B(4, -1) and C(-3, -3) are the vertices of $\triangle ABC$. It is given that the slope of AB is -3.
 - (a) Find the value of k.
 - (b) Find the slope of AC.

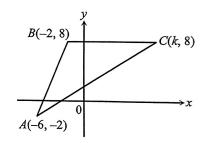

3. Determine whether A(-2, 3), B(3, 6) and C(8, 9) are collinear.

4. Determine whether A(8, 3), B(5, -1) and C(2, -4) are collinear.

5. The line passing through A(-1, 2) and C(2, 5) cuts the y-axis at B. Find the coordinates of B.



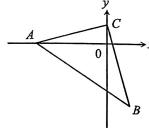
6. The line passing through A(-6, -1) and C(2, 5) cuts the x-axis at B. Find the coordinates of B.



Name:_____ Class:____() Date:_____

- 1. In the figure, L is a straight line passing through the points A(-4, 2) and B(6, 12).
 - (a) Find the slope of L.
 - (b) Find the inclination of L.

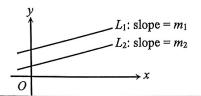
- 2. A(-6, -2), B(-2, 8) and C(k, 8) are the vertices of $\triangle ABC$. It is given that the slope of AC is $\frac{2}{3}$.
 - (a) Find the value of k.
 - **(b)** Find the area of $\triangle ABC$.



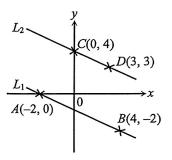
3. In the figure, a straight line L passes through the point (12, 5) and cuts the x-axis and the y-axis at A and B respectively. If the slope of L is -0.8, find the coordinates of A and B.

4. It is given that A(a, 3), B(-1, b), C(-5, 9) and D(3, 15) are collinear. Find the values of a and b.

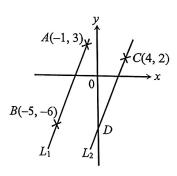
- 5. In the figure, the coordinates of A and B are (-15, 0) and (3, -12) respectively. C is a point lying on the y-axis. It is given that the slope of AC is 0.2.
 - (a) Find the inclination of AC, correct to 3 significant figures.
 - (b) Find the coordinates of C.
 - (c) Is ABC a right-angled triangle? Explain your answer.

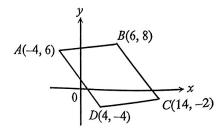

$S.3\ Mathematics \\ Chapter\ 08-Coordinate\ Geometry-Note$

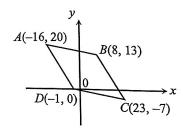
Name:	Class:	()	Date:
		 \	2001


Problems Related to Parallel Lines

Consider two non-vertical straight lines L_1 and L_2 with slopes m_1 and m_2 respectively.


- (1) If $L_1 // L_2$, then $m_1 = m_2$.
- (2) If $m_1 = m_2$, then $L_1 // L_2$.

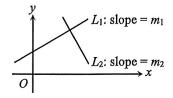

1. In the figure, L_1 is a straight line passing through the points A(-2, 0) and B(4, -2) while L_2 is a straight line passing through the points C(0, 4) and D(3, 3). Show that $L_1 // L_2$.


2. In the figure, L_1 is a straight line passing through the points A(-1, 3) and B(-5, -6). A straight line L_2 passes through the point C(4, 2) and cuts the y-axis at D. If $L_1 // L_2$, find the coordinates of D.

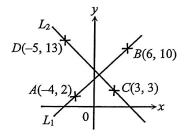
3. In the figure, A(-4, 6), B(6, 8), C(14, -2) and D(4, -4) are the vertices of a quadrilateral ABCD. Show that ABCD is a parallelogram.

4. In the figure, A(-16, 20), B(8, 13), C(23, -7) and D(-1, 0) are the vertices of a quadrilateral ABCD. Show that ABCD is a rhombus.

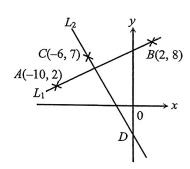
$S.3\ Mathematics \\ Chapter\ 08-Coordinate\ Geometry-Note$


Name:	Class:(()	Date:
Name	Class(, <i>)</i>	Date:

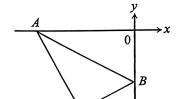
Problems Related to Perpendicular Lines


Consider two straight lines L_1 and L_2 with slopes m_1 and m_2 respectively, where m_1 , $m_2 \neq 0$.

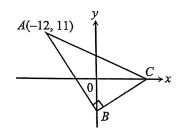
(1) If
$$L_1 \perp L_2$$
, then $m_1 \times m_2 = -1$.


(2) If
$$m_1 \times m_2 = -1$$
, then $L_1 \perp L_2$.

1. In the figure, L_1 is a straight line passing through the points A(-4, 2) and B(6, 10) while L_2 is a straight line passing through the points C(3, 3) and D(-5, 13). Show that $L_1 \perp L_2$.

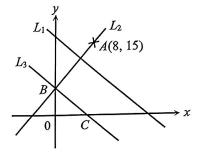


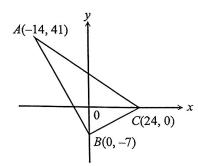
2. In the figure, L_1 is a straight line passing through the points A(-10, 2) and B(2, 8). A straight line L_2 passing through the points C(-6, 7) cuts the y-axis at D. If $L_1 \perp L_2$, find the coordinates of D.


3. In the figure, $\triangle ABC$ is right-angled at C. A and B are points lying on the x-axis and the y-axis respectively.

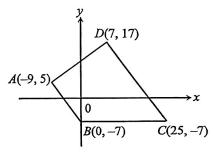
The coordinates of C are (-6, -8). The slope of AC is $-\frac{3}{2}$.

- (a) Find the slope of BC.
- (b) Find the coordinates of B.


- 4. In the figure, $\triangle ABC$ is right-angled at B. B and C are points lying on the y-axis and the x-axis respectively. The coordinates of A are (-12, 11). The slope of AB is -1.25.
 - (a) Find the slope of BC.
 - (b) Find the coordinates of B and C.
 - (c) Find the area of $\triangle ABC$.


Name:	Class:()	Date:
-------	-----------	-------

Parallel Lines and Perpendicular Lines

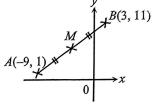

- 1. In the figure, L_1 is a straight line with slope -0.8 while L_2 is a straight line passing through A(8, 15) and cut the y-axis at B. L_3 is a straight line passing through B and cut the x-axis at C. It is given that $L_1 \perp L_2$ and $L_1 \parallel L_3$.
 - (a) Find the slope of L_2 .
 - (b) Find the coordinates of B and C.


- 2. In the figure, A(-14, 41), B(0, -7) and C(24, 0) are vertices of $\triangle ABC$.
 - (a) Show that $\triangle ABC$ is a right-angled triangle.
 - **(b)** Find the area of $\triangle ABC$.

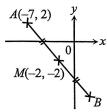
- 3. In the figure, A(-9, 5), B(0, -7), C(25, -7) and D(7, 17) are vertices of a quadrilateral ABCD.
 - (a) Show that AB // DC.
 - (b) Show that ABCD is a right-angled trapezium.

- 4. In the figure, ABCD is a rectangle. The coordinates of A, B and D are (-5, 0), (-2, -6) and (p, q) respectively. C lies on the x-axis.
 - (a) Find the slope of AB and the slope of BC.
 - (b) Find the coordinates of C.
 - (c) (i) Express the slope of AD in terms of p and q.
 - (ii) Express the slope of CD in terms of p and q.
 - (d) Find the values of p and q.

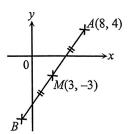
$S.3\ Mathematics \\ Chapter\ 08-Coordinate\ Geometry-Note$

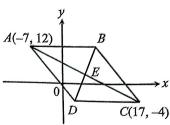

Namas	Class	()	Data
Name:	Class:	.()	Date:

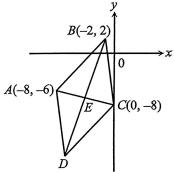
Mid-Point Formula

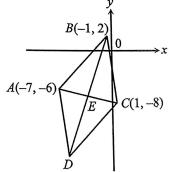

If M(x, y) is the mid-point of the line segment joining the points $A(x_1, y_1)$ and $B(x_2, y_2)$, then

$$x = \frac{x_1 + x_2}{2}$$
 and $y = \frac{y_1 + y_2}{2}$


1. In the figure, M is the mid-point of the line segment joining A(-9, 1) and B(3, 11). Find the coordinates of M.


2. In the figure, M is the mid-point of the line segment AB. The coordinates of A and M are (-7, 2) and (-2, -2) respectively. Find the coordinates of B.

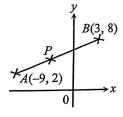

3. In the figure, M is the mid-point of the line segment AB. The coordinates of A and M are (8, 4) and (3, -3) respectively. Find the coordinates of B.


4. In the figure, ABCD is a parallelogram. The diagonals AC and BD intersect at E. The coordinates of A and C are (-7, 12) and (17, -4) respectively. Find the coordinates of E.

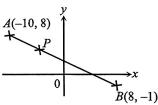
- 5. In the figure, ABCD is a parallelogram. The diagonals AC and BD intersect at E. The coordinates of A, B and C are (-8, -6), (-2, 2) and (0, -8) respectively.
 - (a) Find the coordinates of E.
 - (b) Using the result of (a), find the coordinates of D.

- 6. In the figure, ABCD is a parallelogram. The diagonals AC and BD intersect at E. The coordinates of A, B and C are (-7, -6), (-1, 2) and (1, -8) respectively.
 - (a) Find the coordinates of E.
 - (b) Using the result of (a), find the coordinates of D.

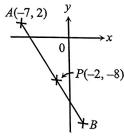
$\begin{array}{c} S.3 \ Mathematics \\ Chapter \ 08-Coordinate \ Geometry-Note \end{array}$

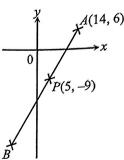

Name:	Class:	()	Date:
1 (41110)	C14001	-(<i>)</i>	Dato

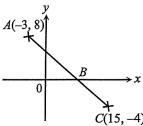
Section Formula

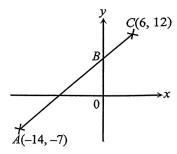

If P(x, y) is a point lying on the line segment joining the points $A(x_1, y_1)$ and $B(x_2, y_2)$ such that AP: PB = r: s, then

$$x = \frac{sx_1 + rx_2}{r + s}$$
 and $y = \frac{sy_1 + ry_2}{r + s}$

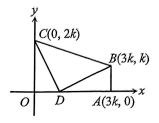

1. In the figure, P is a point lying on the line segment joining A(-9, 2) and B(3, 8) such that AP : PB = 1 : 2. Find the coordinates of P.

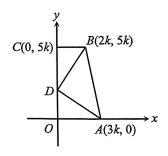

2. In the figure, P is a point lying on the line segment joining A(-10, 8) and B(8, -1) such that AP: PB = 2: 7. Find the coordinates of P.


3. In the figure, P is a point lying on the line segment AB such that AP : PB = 5 : 4. The coordinates of A and P are (-7, 2) and (-2, -8) respectively. Find the coordinates of B.

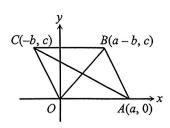

4. In the figure, P is a point lying on the line segment AB such that AP : PB = 3 : 4. The coordinates of A and P are (14, 6) and (5, -9) respectively. Find the coordinates of B.

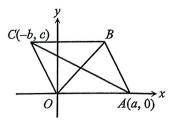
5. In the figure, the line segment AC cuts the x-axis at B. The coordinates of A and C are (-3, 8) and (15, -4) respectively. Find AB : BC.

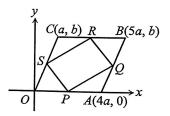

6. In the figure, the line segment AC cuts the y-axis at B. The coordinates of A and C are (-14, -7) and (6, 12) respectively. Find AB : BC.


Name:	Class:(()	Date:

Prove Geometric Properties by Analytic Approach


- 1. In the figure, OABC is a trapezium with AB // OC. O is the origin. The coordinates of A, B and C are (3k, 0), (3k, k) and (0, 2k) respectively. D is a point lying on OA such that OD : DA = 1 : 2.
 - (a) Express the coordinates of D in terms of k.
 - **(b)** Prove that $BD \perp CD$.


- 2. In the figure, OABC is a trapezium with OA // CB. O is the origin. The coordinates of A, B and C are (3k, 0), (2k, 5k) and (0, 5k) respectively. D is a point lying on OC such that OD : DC = 2 : 3.
 - (a) Express the coordinates of D in terms of k.
 - **(b)** Prove that $AD \perp BD$.


3. In the figure, OABC is a parallelogram and O is the origin. The coordinates of A, B and C are (a, 0), (a - b, c) and (-b, c) respectively. Prove that the diagonals AC and OB bisect each other.

- 4. In the figure, OABC is a parallelogram and O is the origin. The coordinates of A and C are (a, 0) and (-b, c) respectively.
 - (a) Show that the coordinates of B are (a b, c).
 - (b) Prove that the diagonals AC and OB bisect each other.

- 5. In the figure, OABC is a parallelogram and O is the origin. The coordinates of A, B and C are (4a, 0), (5a, b) and (a, b) respectively. P, Q, R and S are the mid-points of OA, AB, BC and OC respectively.
 - (a) Express the coordinates of P, Q, R and S in terms of a and b.
 - (b) Prove that PQRS is a parallelogram.

