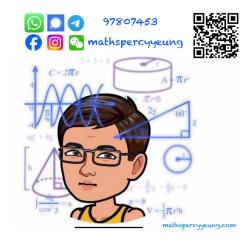
(4B)Ch.8 Logarithmic Functions **GHS Past Paper Question Bank – MC Questions**

Page 1 of 8

Logarithmic Functions Multiple Choice Questions

[20-21]

1. [20-21 S.5 Mid-year #15]


Which of the following is the least in value?

A. 2345²⁰²⁰

B. 3456¹⁹²⁰

C. 4567¹⁸²⁰

D. 6789¹⁷²⁰

2. [20-21 S.4 Final Exam #15]

Which of the following is the greatest?

A. 4680¹⁷²¹

B. 3579¹⁸²¹

C. 2468¹⁹²¹

D. 1357²⁰²¹

3. [20-21 S.4 Final Exam #16]

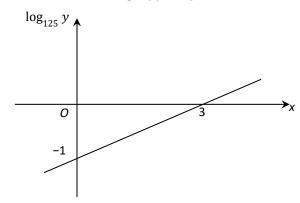
If $\log 2 = a$ and $\log 3 = b$, express $\log 75$ in terms of a and b.

A.
$$2 + 2a + b$$

B.
$$2 + 2a - b$$

C.
$$2 - 2a + b$$

D.
$$2 - 2a - b$$


4. [20-21 S.5 Final Exam #32]

The graph in the figure shows the linear relation between x and $\log_{125} y$. If $y = ab^x$, then b =

B.
$$\frac{1}{125}$$

C. 5.

D. 125.

5. [20-21 S.5 Final Exam #44]

If
$$\begin{cases} (\log y)^2 = x - 4 \\ \log y^2 = x - 7 \end{cases}$$
, then $y = 1$

A.
$$\frac{1}{10}$$
 or 1000.

D. 10 or
$$10^9$$
.

[21-22]

6. [21-22 Final Exam, #20]

Which of the following is the greatest?

- $\mathbf{A.} \quad \left(\frac{1}{89}\right)^{123}$
- **B.** $\left(\frac{3}{97}\right)^{32}$
- $\mathbf{C.}$ 87⁻²³¹
- **D.** $(-0.789)^{312}$

7. [21-22 Final Exam, #21]

 α and β are roots of $(\log x)^2 - \log x^3 - 4 = 0$, find $\alpha\beta$.

- **A.** 1 000
- **B.** 4
- **C.** 0.0001
- **D.** -4

8. [21-22 S.5 Mid-year, #27]

Solve $\log_2 x + \log_4 x^2 = 8$.

- **A.** 4
- **B.** 6
- **C.** 8
- **D.** 16

9. [21-22 S.5 Final Exam, #24]

It is given that $\log_3 y$ is a linear function of $\log_3 x$. The intercepts on the vertical axis and on the horizontal axis of the graph of the linear function are 2 and -4 respectively. Which of the following must be true?

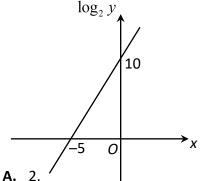
- **A.** $xy^2 = 81$
- **B.** $x^2y = 81$
- $\mathbf{C.} \quad \frac{y^2}{x} = 81$
- **D.** $\frac{y}{x^2} = 81$

10. [21-22 S.6 Mock, #34]

It is given that $\log_5 y$ is a linear function of $\log_{25} x$. The intercepts on the vertical axis and on the horizontal axis of the graph of the linear function are 2 and $-\frac{2}{3}$ respectively. Which of the following is a constant?

- **A.** $x^3 y^2$

[22-23]

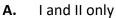

11. [S.4 22-23 Standardized Test,#3]

Let f(x) = (x-3)(ax-b)(3x+1). When f(x) is divided by x-1, the remainder is 4. Find a-b.

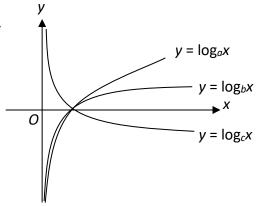
- **D.** 2

12. [S.4 22-23 Standardized Test,#8]

The graph in the figure shows the linear relation between x and $\log_2 y$. If $y = mn^x$, then n =



- **B.** 4.
- **C.** 25.
- **D.** 1024.

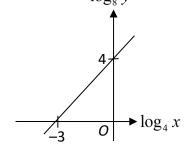

13. [S.4 22-23 Final,#20]

The figure below shows the graphs of three logarithmic functions, where a, b and c are positive constants. Which of the following are true?

- I. The three curves all pass through the point (1,0).
- II. b > a > c
- III. If $\log_b x + \log_c x = 0$ for x > 1, then bc = 1.

- **B.** I and III only
- C. II and III only
- **D.** I, II and III

14. [S.5 22-23 Mid-year,#30]


The graph in the figure shows the linear relation between $\log_4 x$ and $\log_8 y$. Which of the following must be true? $\log_8 y$

A.
$$y^3 = 12x^4$$

B.
$$y = 12x^2$$

c.
$$x^2y = 4096$$

D.
$$v = 4096x^2$$

15. [S.5 22-23 Final,#32]

It is given that $\log_8 y$ is a linear function of $\log_4 x$. The intercepts on the vertical axis and the horizontal axis of the graph of the linear function are 3 and 5 respectively. Which of the following is a constant?

A.
$$x^3 y^5$$

B.
$$x^5y^3$$

C.
$$x^9 v^{10}$$

D.
$$x^{10}y^9$$

16. [S.6 22-23 Timed Practice 2,#33]

It is given that $\log_8 y$ is a linear function of $\log_4 x$. The intercepts on the vertical axis and on the horizontal axis of the graph of the linear function are -3 and 4 respectively. Which of the following must be true?

A.
$$y^8 = 2^{72} x^9$$

B.
$$x^9 = 2^{72} v^8$$

C.
$$y^{11} = 2^{72} x^{10}$$

D.
$$x^{10} = 2^{72} v^{11}$$

17. [S.6 22-23 Timed Practice 2,#41]

Solve the equation $\log_3 x = 4 - \log_x 81$.

A.
$$x = \frac{1}{3}$$
 or 81

B.
$$x = 9 \text{ or } 81$$

C.
$$x = 81$$

D.
$$x = 9$$

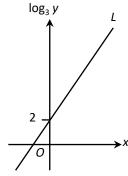
18. [S.6 22-23 Timed Practice 4,#32]


The graph in the figure shows the linear relation between $\log_2 y$ and $\log_4 x$. Which of the following must be true?

A.
$$y = 64x$$

B.
$$y = 8x^3$$

c.
$$y^2 = 3x^3$$


$$\mathbf{D} \cdot \mathbf{v}^2 = 64x^3$$

19. [S.6 22-23 Timed Practice 5,#33]

In the figure, the straight line L shows the relationship between x and log_3 y. The slope and the y-intercept of L are 1 and 2 respectively. If $y = ka^x$, then a + k =

- A. 3.
- B. 9.
- C. 12.
- D. 15.

20. [S.6 22-23 Timed Practice 6,#32]

It is given that $log_8 y$ is a linear function of $log_4 x$. If the slope and the intercept on the horizontal axis of the graph of the linear function are 5 and 2 respectively, then

A.
$$y^2 = 2^{12}x^{15}$$

B.
$$y^2 = \frac{x^{15}}{2^{60}}$$
.

C.
$$x^{15}y^2 = 2^{12}$$
.
D. $x^{15}y^2 = 2^{60}$.

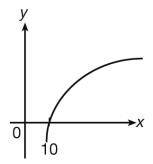
D.
$$x^{15}y^2 = 2^{60}$$

21. [22-23 S6 Mock,#34]

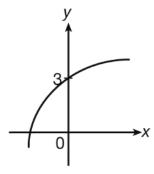
It is given that $\log_9 y$ is a linear function of $\log_3 x$. The intercepts on the vertical axis and on the horizontal axis of the graph of the linear function are 6 and 2 respectively. Which of the following must be true?

A.
$$xy^6 = 3^6$$

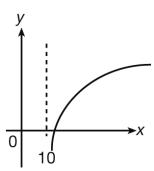
B.
$$x^3y^2 = 3^6$$

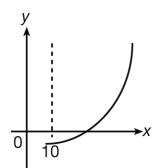

C.
$$x^2y^3 = 3^{12}$$

D.
$$x^6 y = 3^{12}$$


22. [22-23 S6 Mock,#38]

Which of the following may be the graph of $y = \log(x-10) + 3$?


A.


В.

C.

D.

[23-24]

23. [S.4 23-24 Standardized Test,#7]

If
$$\begin{cases} 2x+1 = \log y \\ x - \log y^2 = 1 \end{cases}$$
, then $y = 1$

24. [S.4 23-24 Final,#26]

Let a, b and c be constants where a > b > c > 1. On the same rectangular coordinate system, the graph of $y = a^x$ and the graph of $y = b^x$ cut the straight line y = c at the points P and Q

respectively. If the coordinates of R are (0, c), then $\frac{PR}{QR}$ =

- **A.** $\log_a b$.
- **B.** $\log_c b$.
- **C.** $\log_b a$.
- **D.** $\log_{a} a$.

25. [S.5 23-24 Mid-year,#29]

Solve $\log(x+4) + \log(x-5) = 1$

- **A.** x = -4 or x = 5
- **B.** x = 5
- **C.** x = 6
- **D.** x = 6 or x = -5

26. [S.5 23-24 Mid-year,#30]

It is given that $\log_2 y$ is a linear function of $\log_4 x$. The intercepts on the vertical axis and the horizontal axis of the graph of the linear function are 3 and 2 respectively. Which of the following must be true?

- **A.** $xy^3 = 2^{12}$
- **B.** $x^3y = 2^{12}$
- **C.** $x^3y^4 = 2^{12}$
- **D.** $x^4v^3 = 2^{12}$

27. [S.5 23-24 Final,#33]

It is given that $\log_k y$ is a linear function of $\log_{k} x$, where $k \neq 0$. If the graph of the linear function passes through (3,-3) and cuts the horizontal axis at 6. Which of the following must be true?

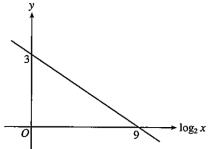
- **A.** $\frac{x}{y^2} = k^{12}$
- **B.** $\frac{x^2}{y} = k^6$ **C.** $xy^2 = k^3$

28. [S.5 23-24 Final,#39]

Let a, b and c be constants where a > b > c > 1. On the same rectangular coordinate system, the graph of $y = \log_a x$ and the graph of $y = \log_b x$ cut the straight line x = c at the points P and Q respectively. If the coordinates of R are (c, 0), then $\frac{PR}{OR} = \frac{PR}{OR}$

- **A.** $\log_a b$.
- **B.** $\log_a c$.
- **C.** $\log_b a$.
- **D.** $\log_b c$.

29. [S.6 23-24 Timed Practice 2,#25]


If $x + \log y = x^2 + \log y^2 - 8 = 5$, then y =

- **A.** 10^2 .
- **B.** 10^2 or 10^5 .
- C. 10 or 10^6 .
- **D.** 10^2 or 10^6 .

30. [S.6 23-24 Timed Practice 4,#33]

The graph in the figure shows the linear relation between y and $\log_2 x$. If $y = m \log_4 x + c$, then m =

- A. 3
- B. $\frac{1}{3}$
- C. $-\frac{1}{3}$
- D. $-\frac{2}{3}$

31. [S.6 23-24 Timed Practice 6,#33]

If $x^{\log x} - 10\ 000 = 0$, then $x^2 =$

- A. $\frac{1}{100\ 000\ 000}$ or 25.
- B. $\frac{1}{10\ 000}$ or 10 000.
- C. 10 000.
- D. 4.

~End~

Logarithmic Functions Conventional Questions

[20-21]

1. [20-21 S.4 Final Exam #12]

Simplify
$$\frac{\log_9 a^3}{\log_3 a^2}$$
.

(3 marks)

2. [20-21 S.4 Final Exam #13b]

Solve the following equations.

$$\log(5x + 59) - \log(3x) = 2.$$

(3 marks)

3. [20-21 S.4 Final Exam #15]

The population of city A is given by $500\ 000(1.004)^{t+1}$, where t is the number of years after 2021.

(a) Find the population of city A two years after 2021.

(2 marks)

(b) In which year will the population of city *A* first exceed 530 000?

(3 marks)

(Give your answers correct to the nearest integer.)

[21-22]

4. [21-22 Final, #7c]

Solve the following equations.

$$\frac{1}{2}\log_2 x - 1 = \log_2 4x$$

(4 marks)

5. [21-22 S.5 Final Exam, #14]

Solve
$$\log_4(x + 3) = \log_2 x + 1$$
.

(3 marks)

[22-23]

6. [S.4 22-23 Standardized Test,#5]

Solve
$$\begin{cases} \log_2(4x+y) = 3\\ 3\log_8 x = \log_2 \sqrt{5-y} \end{cases}$$
 (4)

marks)

7. [S.4 22-23 Standardized Test,#6]

It is given that $f(x) = 3(\log_a x)^2 + \log_a x^b$ where a and b are constants. If the equation f(x) = b + 3 has equal roots, express x in terms of a. (3 marks)

(2 marks)

8. [S.4 22-23 Final,#14]

Solve the following equations.

(a)
$$x^4 - 2x^2 - 3 = 0$$

(b)
$$4(\log x)^2 + 3\log x^2 + 2 = 0$$
 (2 marks)

9. [S.4 22-23 Final,#15]

It is given that y is a linear function of $\log x$. The slope and the intercept on the horizontal axis of the graph are 2 and -3 respectively. Express the relation between x and y in the form $x^k = 10^{y+A}$, where k and A are constants. (3 marks)

[23-24]

10. [S.4 23-24 Standardized Test,#6]

Solve
$$\log_4(x+1) = \log_{16}(31+x)$$
. (3 marks)

11. [S.4 23-24 Final,#14]

Solve
$$\log_2(x-8) = \log_4 x + 1$$
. (4 marks)

12. [S.6 23-24 Timed Practice 5,#8]

Let a and b be constants. Denote the graph of $y = a + \log_b(x + 16)$ by G. The x-intercept and the y-intercept of G are -12 and 1 respectively. Express x in terms of y. (4 marks)

13. [S.6 23-24 Timed Practice 7,#9]

Let α and β be real numbers such that $\begin{cases} 3^{\beta-\alpha} = 81 \\ \log_4(2\alpha + \beta) = 2 \end{cases}$.

- (a) Find α and β . (2 marks)
- (b) The 1st term and the 2nd term of an arithmetic sequence are $\log \alpha$ and $\log \beta$ respectively. Find the least value of n such that the sum of the first n terms of the sequence is greater than 1000.

(5 marks)

~End~