(2B) Ch.2

GHS Past Paper Question Bank - MC questions

Page 1 of 7

Similarity

Similar Triangles Multiple Choice Questions

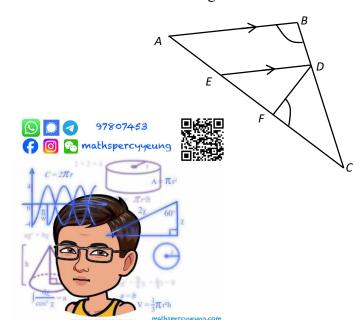
[20-21]

1. [20-21 S. 2 Final Exam #23]

In the figure, AB // ED and $\angle ABC = \angle CFD$. Which of the followings must be correct?

I. $\triangle CFD \sim \triangle CDE$

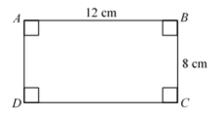
II. $\triangle CDE \sim \triangle DFE$


III. $AB \times CD = AC \times DF$

A. I only

B. II only

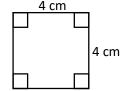
C. I and II only


D. I and III only

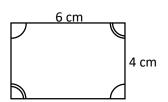
[21-22]

2. [21-22 S.2 Mid-year, #6]

The figure below shows a rectangle ABCD with AB = 12 cm and BC = 8 cm.



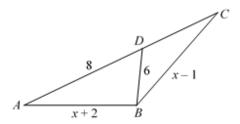
Which of the following figure(s) must be similar to rectangle ABCD?


I.

II.

III.

A. I only


C. I and III only

B. II only

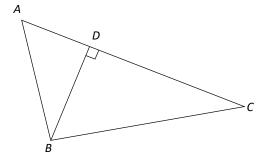
D. II and III only

3. [21-22 S.2 Mid-year, #9]

In the figure, D is a point on AC such that AD = 8 and BD = 6. If AB = x + 2, BC = x - 1 and $\triangle ABC \sim \triangle ADB$, find the value of x.

- **A.** 9
- **B.** 10
- **C.** 11
- **D.** 12

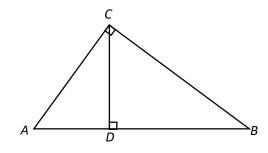
4. [21-22 S.2 Mid-year, #14]


The figure shows a triangle ADE. B and C are the mid-points of AD and AE respectively. Which of the following must be true?

- I. DE : BC = 2 : 1
- II. DE //BC
- III. $AB \times AE = AC \times AD$
- **A.** I and II only
- **B.** I and III only
- **C.** II and III only
- **D.** I, II and III

5. [21-22 Final,#10]

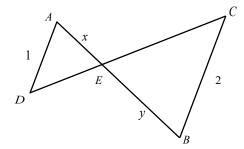
In the figure, D is a point on AC such that $BD \perp AC$. If AB = 28 cm, BC = 45 cm and DC = 43.2 cm, find the length of AD correct to the nearest 0.1 cm.


- **A.** 9.8 cm.
- **B.** 12.6 cm.
- **C.** 19.8 cm.
- **D.** 25.0 cm.

6. [21-22 Final,#20]

In the figure, $\triangle ABC$ is a right-angled triangle with $\angle ACB = 90^{\circ}$. D is a point on AB such that $CD \perp AB$. Which of the following must be true?

- I. $DC^2 = AD \times BD$
- II. $AC \times CB = AB \times CD$
- III. If AD : DC = 1: 2, then 2AB = 5CD.

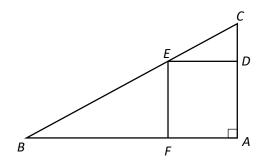

- **A.** I and II only
- **B.** I and III only
- C. II and III only
- **D.** I, II and III

[22-23]

7. [22-23 Mid-Year,#8]

In the figure, AB and CD intersect at the point E. It is given that AD = 1 and CB = 2. If AD // CB, AE = x and EB = y, which of the following MUST be true?

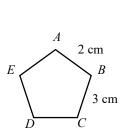
- I. $\triangle ADE \sim \triangle BCE$
- II. y = 2x
- III. $\angle CBA = \angle DAB$

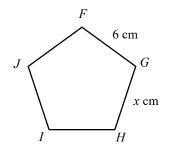


- **A.** I and II only
- **B.** I and III only
- **C.** II and III only
- **D.** I, II and III

8. [22-23 Mid-Year,#17]

In the figure, ABC is a right-angled triangle with $\angle BAC = 90^{\circ}$. D, E and F are points on AC, BC and AB respectively so that ADEF is a rectangle. If CD = 3 cm and BF = 7 cm, then the area of ADEF is


- **A.** 10.5 cm^2 .
- **B.** 21 cm^2 .
- C. 32 cm^2 .
- **D.** 42 cm^2 .

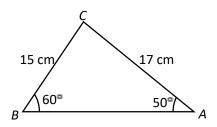


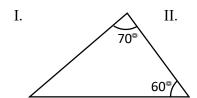
9. [22-23 Final,#4]

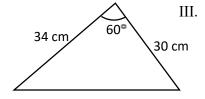
In the figure, ABCDE is similar to FGHIJ. If AB = 2 cm, BC = 3 cm, FG = 6 cm and GH = x cm, find the value of x.

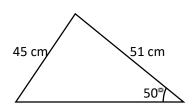
- **A.** 3
- **B.** 9
- C. 27
- **D.** 81

10. [22-23 Final,#24]

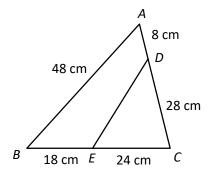

 $\triangle ABC$ is a right-angled triangle with $\angle B = 90^{\circ}$. If P, Q and R are mid-points of AB, BC and AC respectively, which of the following must be true?


- I. $\angle PRQ = 90^{\circ}$
- II. $\triangle PQR \sim \triangle CAB$
- III. AC // PQ
- **A.** I and II only
- B. I and III only
- C. II and III only
- D. I, II and III


[23-24]

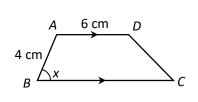

11. [23-24 Mid-Year,#4]

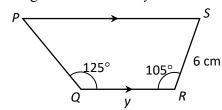
The figure shows a triangle ABC with $\angle A = 50^{\circ}$, $\angle B = 60^{\circ}$, AC = 17 cm and BC = 15 cm. Which of the following triangle(s) must be similar to $\triangle ABC$?



- **A.** I only
- **B.** II only
- **C.** I and III only
- **D.** II and III only

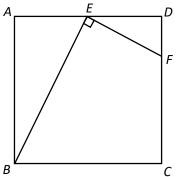
12. [23-24 Mid-Year,#18]


In the figure, ABC is a triangle. D and E are points on AC and BC respectively. Find the length of DE.


- **A.** 30 cm
- **B.** 32 cm
- **C.** 36 cm
- **D.** 40 cm

13. [23-24 Mid-Year,#19]

In the figure, ABCD and RSPQ are similar figures. Find x and y.



- **A.** $x = 55^{\circ}, y = 8 \text{ cm}$
- **B.** $x = 55^{\circ}, y = 9 \text{ cm}$
- C. $x = 75^{\circ}, y = 8 \text{ cm}$
- **D.** $x = 75^{\circ}, y = 9 \text{ cm}$

14. [23-24 Mid-Year,#20]

In the figure, ABCD is a square. E is the mid-point of AD and F is a point on CD such that $FE \perp BE$. Which of the following are true?

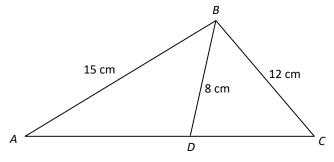
- I. $\triangle ABE \sim \triangle DEF$
- II. $\triangle ABE \sim \triangle EBF$
- III. AB = 4DF
 - A. I and II only
 - **B.** I and III only
 - C. II and III only
 - **D.** I, II and III

15. [23-24 Final,#2]

It is given that $\triangle ABC \sim \triangle DEF$. If $\angle A = 2x + 15^{\circ}$, $\angle B = 4x$, $\angle C = 3x + 30^{\circ}$ and $\angle F = 3y$, find x and y.

A.
$$x = 15^{\circ}$$
, $y = 20^{\circ}$

B.
$$x = 15^{\circ}$$
, $y = 25^{\circ}$


C.
$$x = 20^{\circ}$$
, $y = 20^{\circ}$

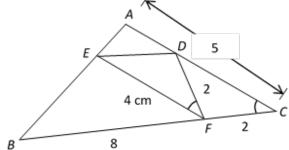
D.
$$x = 20^{\circ}$$
 , $y = 25^{\circ}$

16. [23-24 Final,#21]

The figure shows a triangle ABC. D is a point on AC such that $\angle ABD = \angle ACB$. If AB = 15 cm, BC = 12 cm and BD = 8 cm, find CD.

- **A.** 12.5 cm
- **B.** 11.5 cm
- **C.** 10 cm
- **D.** 8.8 cm

 \sim End \sim


Similarity Conventional Questions

[20-21]

1. [20-21 S. 2 Final Exam #20]

In **Figure 9**, D, E and F are points on AC, AB and BC respectively. BF = 8 cm, DF = FC = 2 cm, EF = 4 cm, AC = 5 cm and $\angle ACB = \angle DFE$.

- (a) Prove that $\triangle ABC \sim \triangle DEF$.
- (3 marks)
- **(b)** Prove that AC // EF.
- (2 marks)

[21-22]

2. [21-22 S.2 Mid-year, #1]

Figure 1 shows two triangles *ABC* and *DEF*. *AB* = 8 cm, *DE* = 6 cm, *DF* = 7.5 cm, $\angle ABC = 70^{\circ}$, $\angle ACB = 60^{\circ}$ and $\angle DEF = x$. If $\triangle ABC \sim \triangle DEF$, find

- (a) x,
- (b) the length of AC. (3 marks)

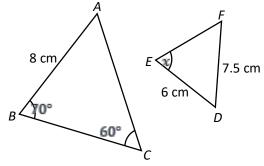


Figure 1

3. [21-22 S.2 Mid-year, #11]

In Figure 2, ABD and BCE are straight lines. AB = 4 cm, BD = 6 cm, BC = 3 cm,

CE = AC = 5 cm and DE = 10 cm.

(a) Prove that $\triangle ABC \sim \triangle EBD$.

(2 marks)

(b) Prove that $BE \perp AD$.

(2 marks)

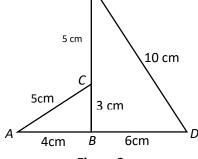
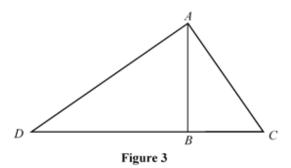



Figure 2

4. [21-22 S.2 Mid-year, #13]

In Figure 3, $\triangle DAC$ is a right-angled triangle with $\angle DAC = 90^{\circ}$. B is a point on DC such that AB \perp DC.

(a) Prove that $\triangle ADB \sim \triangle CAB$.

(2 marks)

(b) Suppose AB : DB = 3 : 4 and BC = (y + 1) cm. Find the area of $\triangle ABC$ in terms of y.

(2 marks)

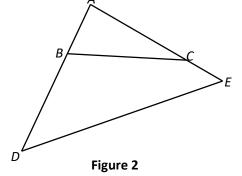

5. [21-22 S.2 Final Exam, #9]

Figure 2 shows $\triangle ADE$ with AD=6 cm and AE=4 cm. B is a point on AD such that AB=2 cm. C is a point on AE such that AC=3 cm.

(a) Prove that $\triangle ABC \sim \triangle AED$.

(2 marks)

(b) If $\angle DAE = 104^{\circ}$ and $\angle ADE = 47^{\circ}$, find $\angle ABC$. (2 marks)

6. [21-22 S.2 Final,#12]

Figure 4 shows a trapezium ABCD with $\angle DAB = \angle ABC = 90^{\circ}$. E is a point on AB such that AE : EB = 4:1. It is given that AD = 5 cm, BC = 8 cm and AB = 15 cm.

(a) Find **DE** and **CE**. Give your answers in surd form if necessary.

(3 marks)

(b) Show that $\triangle CDE$ is a right-angled triangle. State which angle is the right angle.

(2 marks)

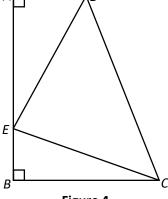
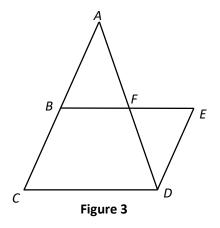


Figure 4

[22-23]

7. [22-23 S.2 Mid-Year,#6]


In **Figure 3**, ABC, AFD and BFE are straight lines. It is given that $AC /\!\!/ ED$ and $FE /\!\!/ CD$.

(a) Prove that $\triangle ACD \sim \triangle DEF$.

(2 marks)

(b) Suppose $\angle ACD = 50^{\circ}$ and $\angle ADE = 65^{\circ}$. Find $\angle AFE$.

(2 marks)

8. [22-23 S.2 Mid-Year,#13]

In **Figure 6**, ABCD is a quadrilateral. E is a point lying on BC such that $AE \perp BD$. AE and BD intersects at F. It is given that $\triangle ADF \sim \triangle EBF$.

(a) If AF : EF = 3:2, find DF : BF.

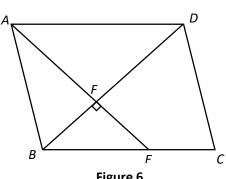
(2 marks)

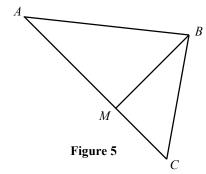
(b) Let BF = x cm and EF = y cm. Find the area of $\triangle ADF$: the area of $\triangle EBF$.

(2 marks)

(c) It is given that $\triangle ADB \cong \triangle CBD$ and the area of $\triangle EBF$ is 16 cm². Find the area of the quadrilateral ABCD.

(3 marks)




Figure 6

9. [22-23 S.2 Final,#16]

Figure 5 shows $\triangle ABC$. M is a point on AC such that $\triangle AMB \sim \triangle BMC$.

(a) Prove that $\triangle AMB \sim \triangle ABC$.

- (2 marks)
- **(b)** Suppose AM : MC = 3 : 1 and $BM = 2\sqrt{3}$, find the length of BC.
- (3 marks)

[23-24]

10. [23-24 S.2 Mid-Year,#6]

In **Figure 1**, AE and BD intersect at C. It is given that $\triangle ABC \sim \triangle EDC$, AC = 3, BC = 4 and CE = 12. Find CD.

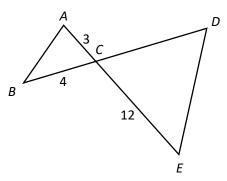


Figure 1

11. [23-24 S.2 Mid-Year,#9]

Figure 2 shows a right-angled triangle ABC with $\angle ABC = 90^{\circ}$. D and E are points on AC and BC respectively such that $DE \perp BC$, DE = 6 cm, BE = 24 cm and EC = 8 cm. F is a point on AB such that FB = 18 cm.

(a) Prove that $\triangle BEF \sim \triangle ECD$.

(3 marks)

(b) Prove that CA // EF.

(2 marks)

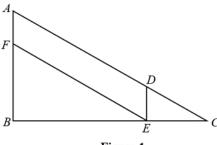


Figure 1

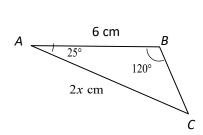
In $\triangle ABC$, D is a point on AC such that $\triangle ABC \sim \triangle BDC$. Let AD = q, DC = r and BC = s.

- (a) Show that $q = \frac{s^2 r^2}{r}$. (2 marks)
- (b) Suppose that q = s + r.
 - (i) Find s:r.
 - (ii) If BC = 5 and BD = 4, find the perimeter of $\triangle ABC$.

(4 marks)

13. [23-24 S.2 Final,#2]

Figure 1 shows $\triangle ABC$ and $\triangle DEF$ where $\angle BAC = 25^{\circ}$, $\angle ABC = 120^{\circ}$, AB = 6 cm, AC = 2x cm, $\angle EDF = 25^{\circ}$, $\angle DFE = 35^{\circ}$, DE = 18 cm and DF = 7y cm.


(a) $\triangle ABC \sim \triangle DEF$.

Prove that

(3 marks)

(b)

Find x:y. (2 marks)

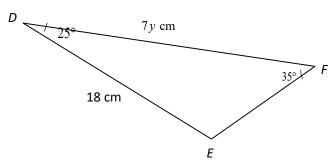


Figure 1