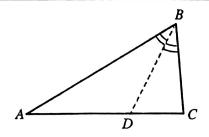
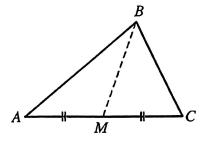
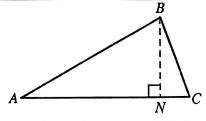
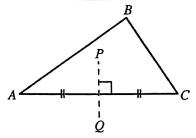

S.3 Mathematics


School-Based Exercise (S.B.E)

Chapter 6 Special Lines and Centres in a Triangle

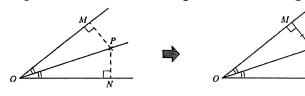

	/	×
Name:	1	
Name.	(


6.1 and 6.3 Angle Bisectors, Perpendicular Bisectors, Median and Altitude


BD is a angle bisector of $\angle ABC$.

BM is a median of $\triangle ABC$.

BN is an altitude of $\triangle ABC$.

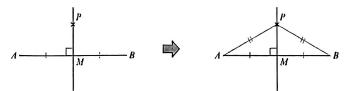


PQ is a perpendicular bisector of AC.

(Perpendicular: $PQ \perp AC$).

(Bisector: AO = AC).

A straight line that bisects an angle is called an angle bisector.



If OP is the angle bisector of $\angle MON$, $PM \perp OM$ and $PN \perp ON$, then PM = PN. [Abbreviation: $\angle bisector\ property$]

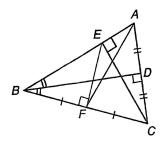
If PM = PN, $PM \perp OM$ and $PN \perp ON$, then OP is the angle bisector of $\angle MON$. [Abbreviation: converse of \angle bisector property]

A perpendicular line that bisects a line segment is called a perpendicular bisector.

If PM is the perpendicular bisector of AB, then AP = BP.

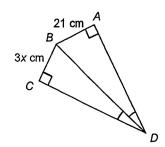
[Abbreviation: ⊥ *bisector property*]

If AP = BP, then P lies on the perpendicular bisector of AB.

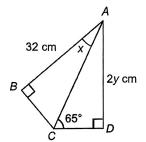

[Abbreviation: converse of \perp bisector property]

Note: PM is the perpendicular bisector of AB in each of the following cases.

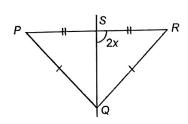
Case 1: AP = BP and AM = BMCase 2: AP = BP and $PM \perp AB$


Level 1

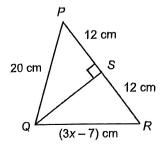
- 1. Refer to the figure.
 - (a) Name the angle bisector(s) of $\triangle ABC$.
 - **(b)** Name the median(s) of $\triangle ABC$.
 - (c) Name the altitude(s) of $\triangle ABC$.
 - (d) Name the perpendicular bisector(s) of $\triangle ABC$.


Find the unknown(s) in each of the following figures. (2-5)

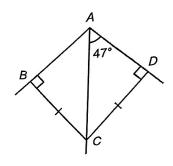
2.


BD is the angle bisector of $\angle ADC$.

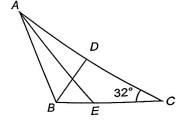
3.


AC is the angle bisector of $\angle BCD$.

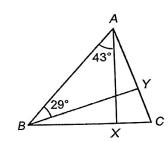
4.

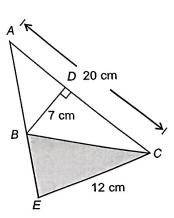

PSR is a straight line.

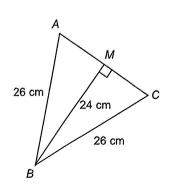
5.

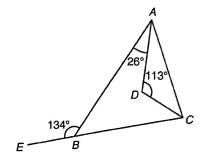


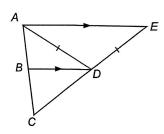
PSR is a straight line.


6. In the figure, $AB \perp BC$ and $AD \perp CD$. If $\angle CAD = 47^{\circ}$, find $\angle ACB$.

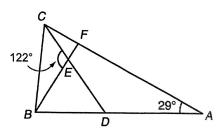

- 7. In the figure, BD is the perpendicular bisector of AC and AE is the angle bisector of $\angle BAC$. If $\angle ACB = 32^{\circ}$, find
 - (a) $\angle CAE$,
 - **(b)** ∠*AEB*.


8. In the figure, X and Y are points on BC and AC respectively such that AX and BY are two altitudes of $\triangle ABC$. $\angle ABY = 29^{\circ}$ and $\angle BAX = 43^{\circ}$. Find $\angle ACB$.

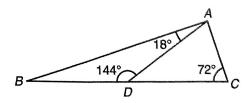

9. In the figure, B is a point on AE such that BC is the angle bisector of $\angle ACE$. D is a point on AC such that BD \perp AC. AC = 20 cm, BD = 7 cm and CE = 12 cm. Find the area of $\triangle BCE$.


10. In the figure, M is a point on AC such that $BM \perp AC$. AB = BC = 26 cm and BM = 24 cm. Find the length of AC.

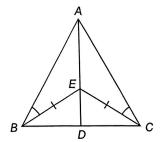
11. In the figure, EBC is a straight line. AD is the angle bisector of $\angle BAC$. $\angle ABE = 134^{\circ}$, $\angle BAD = 26^{\circ}$ and $\angle ADC = 113^{\circ}$. Is CD the angle bisector of $\angle ACB$? Explain your answer.



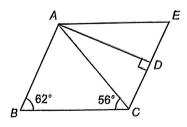
12. In the figure, ABC and CDE are straight lines, $AE \parallel BD$ and AD = DE. Is BD the angle bisector of $\angle ADC$? Explain your answer.



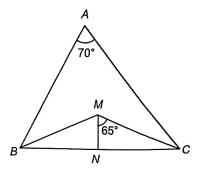
Level 2


13. In the figure, AFC and ADB are straight lines. BF and CD intersect at E such that BE = DE. $\angle BAC = 29^{\circ}$ and $\angle BEC = 122^{\circ}$. Prove that BF is an altitude of $\triangle ABC$.

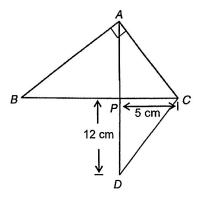
14. In the figure, BDC is a straight line. $\angle BAD = 18^{\circ}$, $\angle ADB = 144^{\circ}$ and $\angle ACD = 72^{\circ}$. Prove that AD is a median of $\triangle ABC$.



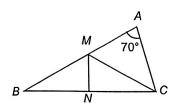
- 15. In the figure, BDC is a straight line. E is a point on AD such that BE = CE and $\angle ABE = \angle ACE$.
 - (a) Prove that $\angle ABC = \angle ACB$.
 - **(b)** Prove that AD is the perpendicular bisector of BC.

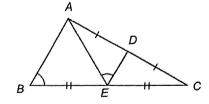

Cross-topic

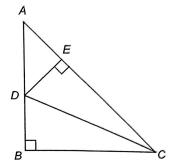
- 16. In the figure, ABCE is a parallelogram. D is a point on CE such that $AD \perp CE$. $\angle ABC = 62^{\circ}$ and $\angle ACB = 56^{\circ}$.
 - (a) Prove that AC = BC.
 - **(b)** Is *AD* the perpendicular bisector of *CE*? Explain your answer.



- 17. In the figure, M and N are points on PR and QR respectively such that PN and QM are the angle bisectors of $\angle QPR$ and $\angle PQR$ respectively. QM is an altitude of $\triangle PQR$. PN and QM intersect at T. If $\angle PRQ = 62^{\circ}$, find
 - (a) $\angle PQM$,
 - (b) $\angle MTN$.


- aide M $G2^{\circ}$ R
- 18. In the figure, MC is the angle bisector of $\angle ACB$. N is a point on BC such that MN is the perpendicular bisector of BC. $\angle BAC = 70^{\circ}$ and $\angle CMN = 65^{\circ}$. Find $\angle ABM$.


- 19. In the figure, APD and BPC are straight lines. BC is the perpendicular bisector of AD. $\angle BAC = 90^{\circ}$, CP = 5 cm and DP = 12 cm.
 - (a) Prove that $\triangle ABP \sim \triangle CDP$.
 - (b) Hence, find the length of AB.


20. In the figure, M and N are points on AB and BC such that MN is the perpendicular bisector of BC. If $\angle BAC = 70^{\circ}$ and AB = BC, find $\angle ACM$ and $\angle AMC$.

- **21.** In the figure, D and E are the mid-points of AC and BC respectively. $\angle AED = \angle ABE$.
 - (a) Prove that AE = BE.
 - (b) Prove that DE is the perpendicular bisector of AC.

- **22.** In the figure, $\triangle ABC$ is a right-angled isosceles triangle, where $\angle ABC = 90^{\circ}$ and AB = BC. D is a point on AB such that CD is the angle bisector of $\angle ACB$. E is a point on AC such that $DE \perp AC$.
 - (a) Prove that AE = DE.
 - **(b)** Prove that AB = CE.
 - (c) If AC = 102 cm, find the perimeter of $\triangle ADE$.

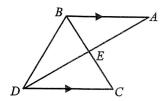
Multiple Choice Questions

23. In the figure, D is a point on BC such that AD is an altitude of $\triangle ABC$. E is a point on AB such that DE is the angle bisector of $\angle ADB$. $\angle ABD = 55^{\circ}$ and $\angle ACB = 85^{\circ}$. Find $\angle AED$.

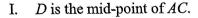
B. 95°

C. 100°

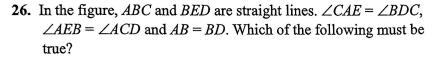
D. 110°



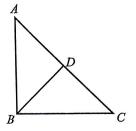
- **24.** In the figure, AD and BC intersect at E. AD is the angle bisector of $\angle BDC$ and AB // CD. Which of the following must be true?
 - A. BC is the angle bisector of $\angle ABD$.

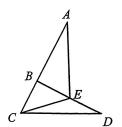

B. DE is a median of $\triangle BCD$.

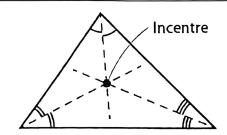
C. BE is the perpendicular bisector of AD.


D. $\triangle ABD$ is an isosceles triangle.

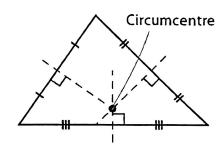
25. In the figure, D is a point on AC such that BD is an altitude of $\triangle ABC$ and the angle bisector of $\angle ABC$. Which of the following must be true?

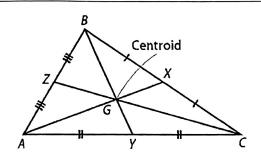



- II. $\triangle ABC$ is a right-angled triangle.
- III. $\triangle ABC$ is an isosceles triangle.
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

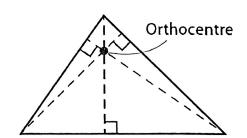


- II. CB is an altitude of $\triangle CDE$.
- III. CE is a median of $\triangle BCD$.
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III



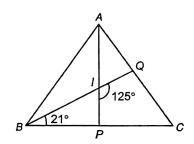

6.2 and 6.3 Centres of a Triangle

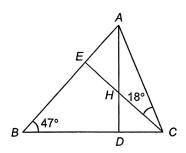
Incentre is the interception point of three angle bisectors.



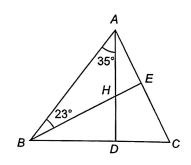
Circumcentre is the interception point of three **perpendicular bisectors**.

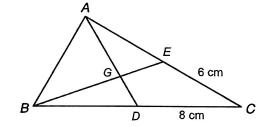
Centroid is the interception point of three medians.

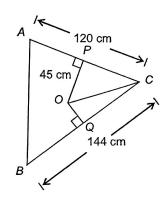

[Note: AG: GX = BG: GY = CG: GZ = 2:1]


Orthocentre is the interception point of three altitudes.

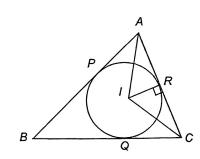
Level 1


1. In the figure, I is the incentre of $\triangle ABC$. AI and BI are produced to meet BC and AC at P and Q respectively. $\angle PBI = 21^{\circ}$ and $\angle PIQ = 125^{\circ}$. Find $\angle ACB$.

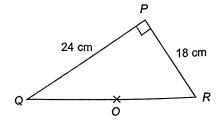

2. In the figure, H is the orthocentre of $\triangle ABC$. AH and CH are produced to meet BC and AB at D and E respectively. $\angle ABC = 47^{\circ}$ and $\angle ACE = 18^{\circ}$. Find $\angle CAD$.


3. In the figure, H is the orthocentre of $\triangle ABC$. AH and BH are produced to meet BC and AC at D and E respectively. $\angle ABE = 23^{\circ}$ and $\angle BAD = 35^{\circ}$. Find $\angle ACB$.

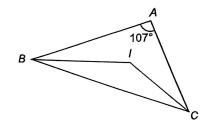
4. In the figure, G is the centroid of $\triangle ABC$. AG and BG are produced to meet BC and AC at D and E respectively. CD = 8 cm, CE = 6 cm and the perimeter of $\triangle ABC$ is 35 cm. Find the length of AB.



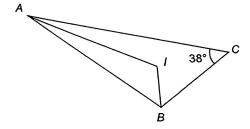
5. In the figure, O is the circumcentre of $\triangle ABC$. P and Q are points on AC and BC respectively such that $OP \perp AC$ and $OQ \perp BC$. AC = 120 cm, BC = 144 cm and OP = 45 cm. Find the length of OQ.


Cross-topic

6. In the figure, I is the incentre of $\triangle ABC$ and PQR is the circle that fits into $\triangle ABC$. $IR \perp AC$, IA = IC = 17 cm and AC = 30 cm. Find the circumference of the circle in terms of π .

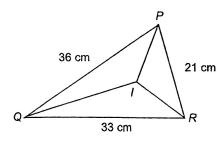

Cross-topic

7. In the figure, O is the circumcentre of $\triangle PQR$ and lies on QR. PQ = 24 cm, PR = 18 cm and $\angle QPR = 90^{\circ}$. Find the area of the circle that passes through the three vertices of $\triangle PQR$ in terms of π .

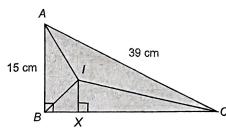


Level 2

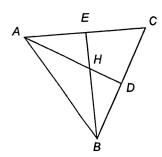
- 8. In the figure, I is the incentre of $\triangle ABC$. It is given that $\angle BAC = 107^{\circ}$.
 - (a) Find $\angle IBC + \angle ICB$.
 - (b) Hence, find reflex $\angle BIC$.

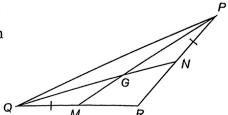


9. In the figure, I is the incentre of $\triangle ABC$. If $\angle ACB = 38^{\circ}$, find $\angle AIB$.

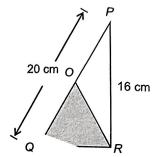


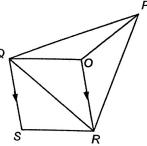
Cross-topic


10. In the figure, I is the incentre of $\triangle PQR$. If PQ = 36 cm, QR = 33 cm and RP = 21 cm, find the ratio area of $\triangle IPQ$: area of $\triangle IQR$: area of $\triangle IRP$.


- 11. In the figure, I is the incentre of right-angled triangle ABC. X is a point on BC such that $IX \perp BC$. AB = 15 cm and AC = 39 cm.
 - (a) Find the area of $\triangle ABC$.
 - (b) Find the length of IX.

- 12. In the figure, H is the orthocentre of $\triangle ABC$. AH and BH are produced to meet BC and AC at D and E respectively and DH = EH.
 - (a) Prove that $\triangle AEH \cong \triangle BDH$.
 - **(b)** If $\angle ACB = 60^{\circ}$, find $\angle BAH$.

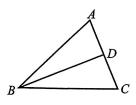

13. In the figure, G is the centroid of $\triangle PQR$. PG and QG are produced to meet QR and PR at M and N respectively such that PN = QM.


- (a) Prove that $\angle MPR = \angle NQR$.
- **(b)** Is GP = GQ? Explain your answer.

Cross-topic

- 14. In the figure, O is the circumcentre of $\triangle PQR$ and lies on PQ. PQ = 20 cm, QR = 12 cm and PR = 16 cm.
 - (a) Prove that $\triangle PQR$ is a right-angled triangle.
 - (b) Find the area of $\triangle OQR$.

- 15. In the figure, O is the circumcentre of $\triangle PQR$ and QS // OR.
 - (a) Prove that QR is the angle bisector of $\angle OQS$.
 - **(b)** If $\angle PQR = 63^{\circ}$ and $\angle RQS = 38^{\circ}$, find $\angle POR$.


Level 3

- **16.** In the figure, D and E are two points on AB and AC respectively such that CD and BE are medians of $\triangle ABC$ and they intersect at O.
 - (a) Prove that $\triangle ABC \sim \triangle ADE$.
 - **(b)** Prove that $\triangle BCO \sim \triangle EDO$.
 - (c) Using the results of (a) and (b), prove that CO:DO=2:1.

- 17. In the figure, BA = BC and D is a point on AC such that $BD \perp AC$.
 - (a) Prove that $\triangle ABD \cong \triangle CBD$.
 - (b) Are the in-centre, the orthocentre, the centroid and the circumcentre of $\triangle ABC$ collinear? Explain your answer.

[Hint: Points are collinear if they lie on the same straight line.]

Multiple Choice Questions

- 18. Which of the following must be the centre of the inscribed circle of a triangle?
 - A. The orthocentre of the triangle
 - B. The centroid of the triangle
 - C. The in-centre of the triangle
 - D. The circumcentre of the triangle
- 19. Which of the following points must lie inside a triangle?
 - I. The in-centre of the triangle
 - II. The orthocentre of the triangle
 - III. The centroid of the triangle
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- **20.** If $\triangle ABC$ is a right-angled triangle, which of the following points must lie inside $\triangle ABC$?
 - I. The centroid of $\triangle ABC$
 - II. The orthocentre of $\triangle ABC$
 - III. The circumcentre $\triangle ABC$
 - A. I only
 - B. II only
 - C. III only
 - D. I, II and III