(4A)Ch.4 GHS Past Paper Question Bank- MC questions Basic Knowledge of Functions

Page 1 of 4

Basic Knowledge of Functions Multiple Choice Question

[19-20]

1. [19-20 Standardized test 1, #2]

What is the domain of the function $y = \left(\frac{3x}{2x-1}\right)^2$?

- **A.** All positive real numbers.
- **B.** All positive real numbers except $\frac{1}{2}$.
- C. All real numbers.
- **D.** All real numbers except $\frac{1}{2}$.

2. [19-20 Mid-year, #13]

How many integral values are there in the domain of $y = \frac{\sqrt{8-x}}{x+5} + \frac{\sqrt{x-3}}{x-5}$?

- **A.** 3
- В.
- **C.** 5
- **D**. 6

[22-23]

3. [S.4 22-23 Mid-Year,#10]

Let k be a constant. If $f(x) = x^2 - 2x + k$, then f(k) + f(-k) =

- \mathbf{A} .
- **B.** 2*k* .
- **C.** $2k^2 + k$.
- **D.** $2k^2 + 2k$.

4. [S.5 22-23 Final,#10]

Let $f(x) = 3(2-x)^2 - 5$. If k is a constant, then f(k+1) + f(k-1) =

- **A.** $6k^2 30k + 39$.
- **B.** $6k^2 24k + 14$.
- C. $6k^2 24k + 20$.
- **D.** $12k^2 24k + 7$.

5. [S.6 22-23 Timed Practice 2,#7]

Let $f(x) = 2x^2 + x - 3$. If α is a constant, then $f(2 - \alpha) =$

- A. $\alpha^2 3\alpha + 1$.
- B. $\alpha^2 9\alpha + 7$.
- C. $2\alpha^2 3\alpha + 1$.
- D. $2\alpha^2 9\alpha + 7$.

6. [S.6 22-23 Timed Practice 4,#5]

If $f(x) = 2x^2 + 4x + 2$, then f(a - 1) - f(a + 1) =

A. 2.

B. 8a + 8.

C. -8a - 8.

D. $4x^2 + 8x + 8$.

7. [S.6 22-23 Timed Practice 5,#7]

Let β be a constant. If $f(x) = x^2 - \beta x + \beta$, then $f(\beta - 1) =$

- A. 0.
- B. 1.
- C. 2β .
- D. $4\beta + 1$.

[23-24]

8. [S.4 23-24 Mid-Year,#12]

Let $f(x) = x^2 - 3x + 7$. $f(\beta + 1) - f(\beta - 1) =$

- A. $4\beta-6$.
- **B.** $4\beta + 6$.
- **C.** -6.
- **D.** 6.

9. [S.4 23-24 Final,#9]

Let $f(x) = x^{333} - x^{33} + 1$. If k is a constant, which of the following must be true?

- **A.** f(k+1) = f(k) + f(1)
- **B.** f(k-1) = f(k) f(1)
- C. f(3) + f(-3) = 2
- **D.** f(3) f(-3) = 0

10. [S.5 23-24 Final,#9]

If
$$f(x) = 3x - x^2$$
, then $f(x) - f(x - 2) =$

- **A.** 2.
- **B.** $-2x^2 + 4x + 10$.
- **C.** -4x 2.
- **D.** -4x + 10.

11. [S.6 23-24 Timed Practice 4,#6]

Let k be a constant. If $f(x) = 4k + 2x - kx^2$, then f(-3) - f(3) =

- A. -12.
- **B.** 0.
- **C.** 18k.
- **D.** 26k.

12. [S.6 23-24 Timed Practice 6,#2]

If $f(x) = 6^x$, find f(x) + f(x+1).

- A. 6^{x+1} B. 6^{x+2}
- C. 6^{2x+1}
- D. $7(6^x)$

13. [S.6 23-24 Timed Practice 6,#8]

If
$$f(x) = (x-3)^2$$
, then $f(x-3) =$

A.
$$x^2 - 12x + 36$$
.

B.
$$x^2 - 6x + 3$$
.

C.
$$x^2 + 6x + 9$$
.

D.
$$x^2 - 36$$
.

~End~

Basic Knowledge of Functions

Ch.4 Basic Knowledge of Functions Conventional Questions

[19-20]

1. [19-20 Standardized test 1, #3]

Let $g(x) = 6x^2 - x + k$. It is given that g(2) = 24.

(a) Find
$$g(-3)$$
.

(3 marks)

(b) Solve $g(-2x) = 13x^2 + 4$. Give your answers in surd form if necessary.

(3 marks)

2. [19-20 Mid-year, #10]

Let $f(x) = ax^2 + bx + 7$, where a and b are real constants.

(a) If
$$f(-1) = 6$$
 and $f(3) = 34$, find the values of a and b.

(2 marks)

(b) If
$$g\left(\frac{x}{2}\right) = f(x)$$
, find $g(x)$.

(2 marks)

[20-21]

3. [20-21 Mid-year, #3]

Let
$$(x) = ax^2 - 4x + 2$$
. If $(3) = 17$, find the value of (-1) .

(4 marks)

4. [20-21 Final Exam, #4]

Let $h(x) = 2x^2 - 18x + k$. It is given that h(-2) = 53.

- (a) Find the value of k.
- **(b)** Find the value(s) of t such that h(t-1) = -31.

(5 marks)

[22-23]

5. [S.5 22-23 Mid-year,#5]

Let
$$f(x) = 6x^2 + 5x - 21$$
.

- (a) Find the x-intercept(s) and the y-intercept of the graph of y = f(x). (2 marks)
- (b) Solve the equation f(a+1) f(a-1) = 2. (2 marks)

Basic Knowledge of Functions

6. [S.5 22-23 Mid-year,#15]

It is given that $g(x) = 12x^3 + ax^2 + bx + 6$, where a and b are constants, and $g\left(\frac{1}{2}\right) = 0$. When g(x) is divided by 2x - 1, the quotient is $px^2 + 5x + q$, where p and q are constants.

- (a) Find p and q. (3 marks)
- (b) Ann claims that the equation $12x^3 + (a+8)x^2 + (b-4)x + 6 = 0$ has 3 distinct real roots. Do you agree? Explain your answer. (3 marks)

[23-24]

7. [S.4 23-24 Mid-Year,#5]

Suppose f(x) = 3x - 8 and g(x) = 3. Find $f(-3) \times g(-3)$. (2 marks)

8. [S.4 23-24 Mid-Year,#6]

The number of reported cases of a flu in the x^{th} month after the outbreak can be modelled by the function $C(x) = -x^2 + kx + 150$, where k is a real constant. It is given that there were 250 reported cases in the 5^{th} month after the outbreak.

- (a) Find the value of k.
- **(b)** Write down the number of reported cases in the 10th month after the outbreak.
- (c) In which month after the outbreak would the number of reported cases be 0?

(5 marks)

9. [S.4 23-24 Final,#6]

Let $f(x) = 7k - 3x^2$, where k is a constant. If f(5) = 9, find the value of f(-1).

(3 marks)

10. [S.5 23-24 Mid-year,#6]

Let f(x) = k - 3x, where k is a constant. It is given that f(1) = a and f(a) = 5.

- (a) Find the values of a and k.
- **(b)** Write down the value of f(a-k).

(4 marks)