(4A)Ch.3

GHS Past Paper Question Bank - MC questions

Quadratic Equations in One Unknown

Page 1 of 17

Ch.3 Quadratic Equations in One Unknown **Multiple Choice Question**

[19-20]

1. [19-20 Standardized test 1, #5]

A car travels for x hours at a constant speed of (4x - 4) km/h. If the distance travelled is 80 km, find the value of x.

- A. 5
- В. 4
- C. 2
- D. 1

2. [19-20 Standardized test 1, #7]

Solve (2x+5)(x-2) = (2x+5)(4-x).

A.
$$x = -\frac{5}{2}$$

B.
$$x = 3$$

C.
$$x = -\frac{5}{2}$$
 or $x = 3$

D.
$$x = \frac{5}{2}$$
 or $x = 3$

3. [19-20 Standardized test 1, #8]

If the equation $x^2 - 2x + 8 = -k$ has real roots, where k is an integer, find the maximum possible value of k.

- **B.** −7
- **C.** 7
- **D.** 8

4. [19-20 Mid-year, #8]

If the equation $2x^2 - 3x + k = 0$ has no real roots, find the range of values of k.

A.
$$k > -\frac{9}{8}$$
 B. $k < -\frac{9}{8}$

B.
$$k < -\frac{9}{8}$$

C.
$$k < \frac{9}{8}$$
 D. $k > \frac{9}{8}$

D.
$$k > \frac{9}{8}$$

5. [19-20 Mid-year, #11]

Solve (x+2)(x-2) = 2-x.

A. x = -3

- **B.** x = -2
- C. x = -3 or x = 2
- **D.** x = -2 or x = 2

6. [19-20 Mid-year, #12]

If $a^2 - 4b^2 = 0$ and ab < 0, then $\frac{a}{b} = 0$

- **A.** -2. **B.** -0.5.
- C. 0.5.
- **D.** 2.

7. [19-20 Mid-year, #14]

If α and β are the roots of the equation $x^2 - ax + b = 0$, which of the following equation whose roots are -2α and -2β ?

- **A.** $x^2 + 2ax 4b = 0$ **B.** $x^2 + 2ax + 4b = 0$
- **C.** $4x^2 + 2ax b = 0$ **D.** $4x^2 + 2ax + b = 0$

8. [19-20 Mid-year, #17]

A stone is thrown vertically upwards. After t seconds, its height (h m) above the ground is given by $h = 6t - t^2 + 7$. Which of the following statements is/are true?

- I. The initial height of the stone from the ground is 7 m.
- II. The maximum height that the stone can reach is 6 m.
- III. After 7 seconds, the stone will reach the ground.
- A. I only

- **B.** I and II only
- I and III only C.
- **D.** II and III only

9. [19-20 Mid-year, #19]

Consider the quadratic equation $bx^2 + ax - b = 0$, where a and b are real numbers. The equation must have

two distinct rational roots. A.

- **B.** two distinct real roots.
- C. two repeated real roots when a = 2b.
- **D.** no real roots.

[20-21]

10. [20-21 Mid-year, #3]

Solve
$$5(x-2) = (x-2)^2$$
.

- A. x = 2
- B. x = 7
- C. x = 2 or 3
- D. x = 2 or 7
- 11. [20-21 Mid-year, #4]

If the graph of $y = -2x^2 - 3x - k$ has two x-intercepts, find the range of the values of k.

- A. $k > -\frac{9}{8}$ B. $k < -\frac{9}{8}$ C. $k > \frac{9}{8}$ D. $k < \frac{9}{8}$

- 12. [20-21 Mid-year, #8]

The quadratic equation $x^2 - 3x + 6 - 2k = -kx$ has one double real root. Find the value(s) of k.

- **A.** $k = \frac{15}{8}$
- B. k = -15 or k = 1
- C. k = -5 or k = 3
- **D.** $k = 3 \pm 2\sqrt{6}$
- 13. [20-21 Mid-year, #9]

If
$$\alpha \neq \beta$$
 and $\begin{cases} \alpha^2 - 3\alpha - 2 = 0 \\ \beta^2 - 3\beta - 2 = 0 \end{cases}$, then $\alpha + \beta = 0$

- A. -3.
- **B.** -2.
- C. 2.
- D. 3.

14. [20-21 Mid-year, #10]

The hypotenuse of a right-angled triangle is (23 - 2x)cm. The other two sides of the triangle are (x + 12)cm and 8 cm respectively. Find the value(s) of x.

- A. x = 1
- B. x = 3
- C. $\chi = \frac{107}{3}$
- D. $x = 3 \text{ or } \frac{107}{3}$

15. [20-21 Final Exam, #4]

Solve the equation (x + 2)x = 5(x + 2).

- **A.** x = -2
- **B.** x = -2 or 5
- $\mathbf{C.} \quad x = 5$
- **D.** x = 2 or 5

16. [20-21 Final Exam, #5]

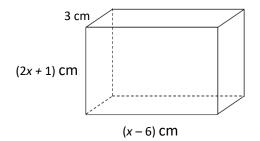
The graph of $y = x^2 - 6x + (k - 2)$ has no x-intercepts. Find the range of values of k.

- **A.** k > 7
- **B.** k < 7
- **C.** k > 11
- **D.** k < 11

17. [20-21 Final Exam, #9]

The figure shows a solid metallic cuboid. If the volume of the cuboid is 102 cm^3 , find the value of x.

- **A.** x = 8.06
- **B.** x = 8.06 or -2.23
- **C.** x = 8
- **D.** x = 8 or -2.5



18. [20-21 Final Exam, #19]

It is given that -4 is a root of the quadratic equation $(x+k)^2 + x - 5 = 0$, where k is a constant. Find k.

- **A.** -1 or 1
- **B.** -1 or 5
- **C.** 1 or 5
- **D.** 1 or 7

Form 4

19. [20-21 S.5 Final Exam, #5]

If a = 2b where a and b are non-zero real constants, find the number of real roots of the equation $x^2 - 2bx + a^2 = 0$.

- **A.** 0
- **B.** 1
- **C.** 2
- **D.** 3

20. [20-21 S.5 Final Exam, #6]

Let a be a constant. Solve the equation $(x - a)^2 = a - x$.

- **A.** x = a 1
- **B.** x = a
- **C.** x = a or x = a 1
- **D.** x = a or x = a + 1

[21-22]

21. [21-22 Mid-year, #6]

Solve (x+1)(x-8) = x+1.

- A. x = 8
- **B.** x = 9
- C. x = -1 or 8
- **D.** x = -1 or 9

22. [21-22 Mid-year, #7]

Solve the equation 2x(x+4) = 3-x.

- **A.** $x = \frac{-9 \pm \sqrt{57}}{4}$
- **B.** $x = \frac{-9 \pm \sqrt{57}}{2}$
- C. $x = \frac{-9 \pm \sqrt{105}}{4}$
- **D.** $x = \frac{-9 \pm \sqrt{105}}{2}$

23. [21-22 Mid-year, #8]

If k is a constant such that the equation $2x^2 + 2x + 8 - k = 0$ has equal roots, find the value of k.

- A.
- B.
- C.
- D.

24. [21-22 Mid-year, #9]

Which of the following quadratic equations can be formed by the roots (k+1) and (k-1), where $k \neq 0$?

- A. $x^2 + 2kx (k^2 1) = 0$ B. $x^2 2kx + (k^2 1) = 0$
- C. $x^2 2kx + (k^2 + 1) = 0$
- $\int_{0}^{\infty} x^{2} + 2kx (k^{2} + 1) = 0$

25. [21-22 Mid-year, #16]

It is given that the area of a right-angled triangle is 60 cm². If the base is 7 cm longer than the height. Find the perimeter of the right-angled triangle.

- A. 30 cm
- 35 cm В.
- C. 40 cm
- D. 45 cm

26. [21-22 Mid-year, #17]

Determine the nature of the roots of the equation $(k+1)x^2 + 3kx - k - 3 = 0$ where k is a positive constant.

- No real roots A.
- В. One double real root
- C. Two unequal real roots
- It cannot be determined D.

27. [21-22 Mid-year, #18]

It is given that α and β are the roots of the quadratic equation $x^2 - 8x + 2 - m = 0$. If the square of the product of roots is two times the sum of roots, then m =

- \mathbf{A} . -2 or 6.
- **B.** 0 or 4.
- **C.** -6 or 2.
- **D.** 6

28. [21-22 Final Exam, #6]

If the sum and the product of two numbers are -7 and 12 respectively, the smaller number is

- **A.** -4
- **B.** -3.
- **C.** 3.
- **D.** 4.

29. [21-22 S.5 Final Exam, #7]

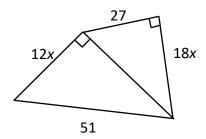
If k is an integer such that the quadratic equation $x^2 + 2x + 2k - 1 = 0$ has two distinct real roots, find the largest value of k.

- **A.** 1
- **B.** 0
- **C.** -1
- **D.** -2

30. [21-22 S.6 Standardized Test, #8]

In the figure, find the value of x.

- **A.** 2
- **B.** 4
- **C.** 8
- **D.** 16



31. [21-22 S.6 Mock, #6]

If k is a constant such that the quadratic equation $4x^2 + 2kx + k + 8 = 0$ has equal roots, then k = 0

- A. -4.
- **B.** 8.
- **C.** -4 or 8.
- **D.** −2 or 1.

32. [21-22 S.6 Mock, #33]

If $m \neq n$ and $3m^2 + 2m = 3n^2 + 2n = 9$, then $9m^2 + mn - 6n =$

- **A.** 19.
- **B.** 26.
- **C.** 28.
- **D.** 34.

33. [21-22 S.6 Final, #5]

If α is a root of the equation $2x^2 - 6x + 15 = 0$, then $10 - 6\alpha^2 + 18\alpha =$

- **A.** −35.
- **B.** 5.
- **C.** 15.
- **D.** 55.

[22-23]

34. [S.4 22-23 Mid-Year,#2]

$$(2a+b)^2 - (a-2b)^2 =$$

- **A.** (a+b)(3a-b).
- **B.** (a-b)(3a+b).
- C. (a+3b)(3a-b).
- **D.** (a-3b)(3a+b).

35. [S.4 22-23 Mid-Year,#8]

Solve the equation (x-3)(x-4) = x-3.

- **A.** x = 4
- **B.** x = 3
- **C.** x = 3 or x = 4
- **D.** x = 3 or x = 5

36. [S.4 22-23 Mid-Year,#13]

The sum of the square of two consecutive positive integers is 1985. Find the sum of these two numbers.

- **A.** 61
- **B.** 63
- **C.** 65
- **D.** 67

37. [S.4 22-23 Mid-Year,#14]

Let k be a constant. If the quadratic equation $2kx^2 - kx = 2x - 1$ has equal roots, then k =

- **A.** 2.
- **B.** 1.
- **C.** −1.
- **D.** −2.

38. [S.4 22-23 Mid-Year,#17]

If $p \neq q$ and $2p^2 - 3p = 2q^2 - 3q = -4$, then (p-4)(q-4) =

- **A.** 2.
- **B.** 12.
- **C.** 14.
- **D.** 24.

39. [S.4 22-23 Mid-Year,#18]

If α is a root of the equation $3x^2 + 4x - 5 = 0$, then $15 - 8\alpha - 6\alpha^2 = 0$

- **A.** 5.
- **B.** 10.
- **C.** 15.
- **D.** 20.

40. [S.4 22-23 Standardized Test,#6]

Solve $4x + 11\sqrt{x} - 3 = 0$.

- **A.** $x = \frac{1}{16}$
- **B.** $x = \frac{1}{2}$
- **C.** x = 9
- **D.** x = 9 or $x = \frac{1}{16}$

41. [S.4 22-23 Final,#6]

Let a be a constant. Solve the equation (x-2a)(x+3a) = (x+3a)(4a-x).

- $\mathbf{A.} \qquad x = a$
- **B.** x = 3a
- C. x = -a or x = 3a
- **D.** x = -3a or x = 3a

42. [S.4 22-23 Final,#7]

Find the range of values of h such that the quadratic equation $x^2 + 4x = 3 - h$ has two distinct real roots.

- **A.** h > -7
- **B.** $h \ge -7$
- **C.** h < 7
- **D.** $h \le 7$

43. [S.4 22-23 Final,#10]

If the simultaneous equations $\begin{cases} y = -x^2 + 10x - k \\ y = 2x + k \end{cases}$ have only one solution, then k = 1

- **A.** −25.
- **B.** −8.
- **C.** 8.
- **D.** 25.

44. [S.4 22-23 Final,#14]

If $\sqrt{16-5x} = 2-x$, then x = -x = -x

- **A.** -4.
- **B.** 3.
- C. -3 or 4.
- **D.** -4 or 3.

45. [S.4 22-23 Final,#24]

If α and β are the roots of the equation $5x^2 - kx - 1 = 0$, where k is a constant, then $5\alpha^2 + k\beta =$

- **A.** 1
- **B.** $\frac{k^2}{5}$
- $\mathbf{C.} \qquad \frac{5-k^2}{5}.$
- **D.** $\frac{k^2+5}{5}$.

46. [S.5 22-23 Mid-year,#8]

Let m be a constant. If the quadratic equation $x^2 - mx + 22 = 2x + m$ has equal roots, then m =

- **A.** -14 or 6.
- **B.** -12 or 8.
- **C.** -8 or 12.
- **D.** -6 or 14.

47. [S.5 22-23 Final,#3]

If $x^2 - 8x + 3 \equiv (-x + a)^2 + b$, then a + b =

- **A.** −23.
- **B.** −17.
- **C.** –9.
- **D.** 3.

48. [S.5 22-23 Final,#5]

Let $f(x) = -x^2 + 5x - 2k$, where k is a constant. If the equation f(x) = 0 has no real roots, find the smallest integral value of k.

- **A.** 2
- **B.**4
- **C.** 6
- **D.** 8

49. [S.5 22-23 Final,#6]

If \square is a root of the equation $x^2 - 2x + 5 = 0$, then $-2\alpha^2 + 4\alpha + 5 =$

- **A.** –2.
- **B.**0.
- **C.** 5.
- **D.** 15.

50. [S.6 22-23 Timed Practice 4,#8]

If k is a constant such that the quadratic equation $x^2 - 6x = k(x - 8)$ has equal roots, then k =

- **A.** 2 or 18.
- **B.** −6 or 8.
- **C.** −6 or 2.
- **D.** -6 or 0.

51. [S.6 22-23 Timed Practice 6,#6]

If β is a root of $3x^2 - 8x + 2 = 0$, then $3 + 16\beta - 6\beta^2 =$

- **A.** -1.
- **B.** 1.
- **C.** 5.
- **D.** 7.

52. [S.6 22-23 Timed Practice 6,#33]

If k is a constant and $\alpha \neq \beta$ such that $\begin{cases} 16^{\alpha} - 4^{\alpha+2} = -k \\ 16^{\beta} - 4^{\beta+2} = -k \end{cases}$, then $\alpha + \beta = -k$

- **A.** 2*k*.
- **B.** *k*.
- C. $\log_4 2k$.
- **D.** $\log_4 k$.

53. [22-23 S6 Mock,#6]

If α is a root of the equation (4x - 3)x = 2, then $6\alpha - 8\alpha^2 + 5 =$

- **A.** −9.
- **B.** -1.
- **C.** 1.
- **D.** 9.

54. [22-23 S6 Mock,#33]

If $p \neq q$ and $p^2 + p = q^2 + q = -5$, then $\frac{1}{p} + \frac{1}{q} =$

- **A.** -5.
- **B.** $-\frac{1}{5}$.
- C. $\frac{1}{5}$.
- **D.** 5

[23-24]

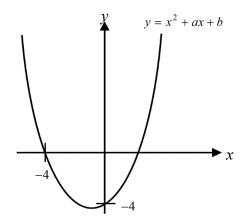
55. [S.4 23-24 Mid-Year,#9]

Solve (t+3)(2t-5) = -2(t+3).

- **A.** t = -3
- **B.** $t = \frac{3}{2}$
- C. $t = -\frac{3}{2}$ or 3
- **D.** $t = \frac{3}{2}$ or -3

56. [S.4 23-24 Mid-Year,#10]

The figure shows the graph of $y = x^2 + ax + b$, where a and b are constants. Find the value of a.



57. [S.4 23-24 Mid-Year,#11]

If the quadratic equation $x^2 - 5x - k - 3 = 0$ has real roots, then the range of values of k is

A.
$$k > -\frac{37}{4}$$
.

B.
$$k \ge -\frac{37}{4}$$
.

C.
$$k < \frac{13}{4}$$
.

D.
$$k \le \frac{13}{4}$$
.

58. [S.4 23-24 Mid-Year,#13]

If the sum of the squares of two consecutive positive numbers is less than the square of the sum of that two numbers by 24, then the smaller number is

- **A.** 1.
- **B.** 2.
- **C.** 3.
- **D.** 4.

59. [S.4 23-24 Mid-Year,#16]

Let $f(x) = ax^2 + 2x - 3a^2$, where a > 0. The graph of y = f(x) cuts the x-axis at point A and B. It passes through (-1, -4) and cuts the y-axis at point C. The area of $\triangle ABC$ is

- **A.** 5 square units.
- **B.** 6 square units.
- C. 10 square units.
- **D.** 12 quare units.

60. [S.4 23-24 Mid-Year,#17]

If
$$\alpha \neq \beta$$
 and $\begin{cases} \alpha^2 - 8 = 3\alpha \\ \beta^2 - 8 = 3\beta \end{cases}$, then $\alpha\beta =$

- **A.** -8.
- **B.** −3.
- **C.** 3.
- **D.** 5.

61. [S.4 23-24 Final,#19]

If
$$g \neq h$$
 and $g^2 + 5g = h^2 + 5h = 8$, then $g^2 + h^2 =$

- **A.** -9.
- **B.** 9.
- **C.** 41.
- **D.** 64.

62. [S.5 23-24 mid-year,#7]

Let k be a constant. Solve the equation (x+k)(x-k) = x-k.

- **A.** x = -k or x = 1 + k
- **B.** x = -k or x = 1 k
- **C.** x = k or x = 1 + k
- **D.** x = k or x = 1 k

63. [S.5 23-24 mid-year,#26]

If $\alpha \neq \beta$ and $\begin{cases} \alpha^2 + 4\alpha = k \\ \beta^2 + 4\beta = k \end{cases}$, where k is a constant, then $\alpha^2 + \beta^2 = \beta^2$

- **A.** 16-k.
- **B.** 16 + k.
- C. 16-2k.
- **D.** 16 + 2k.

64. [S.5 23-24 Final,#5]

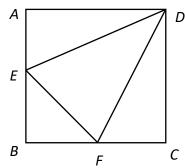
Let k be a constant. Solve the equation (x+k)(x-5k) = (x-5k)(4k-x).

- **A.** x = -k
- **B.** x = 5k
- $\mathbf{C.} \quad x = -k \quad \text{or} \quad x = 4k$
- **D.** $x = \frac{3k}{2}$ or x = 5k

65. [S.5 23-24 Final,#19]

In the figure, the area of the square ABCD is 100 cm^2 . If BE = BF and the area of $\triangle DEF$ is 42 cm^2 , then BE

- **B.** 6 cm.
- C. 7 cm.
- **D.** 8 cm.



66. [S.6 23-24 Timed Practice 4,#29]

If the equation $x^2 - 6x + 9 = kx$ has real roots, then

- **A.** $k \ge -12$.
- **B.** k > 0.
- **C.** $-12 \le k \le 0$.
- **D.** $k \le -12$ or $k \ge 0$.

67. [S.6 23-24 Timed Practice 4,#32]

If
$$\alpha \neq \beta$$
 and
$$\begin{cases} \alpha^2 - 3\alpha + 5 = 0 \\ \beta^2 - 3\beta + 5 = 0 \end{cases}$$
, then $\alpha^3 + \beta^3 = \beta^3 = 0$

- A. -18.
- **B.** −9 .
- **C.** 12.
- **D.** 72.

68. [S.6 23-24 Timed Practice 6,#4]

If
$$(x-5)(x-6) = (c-5)(c-6)$$
, find x.

- A. 5 or 6
- B. c or 5
- C. c or 6
- D. c or 11-c

~End~

Quadratic Equations Conventional Questions

[19-20]

1. [19-20 Standardized test 1, #2]

It is given that $5x^2 + 6x - 4p = 0$ has no real roots. Find the range of values of p. (3 marks)

2. [19-20 Standardized test 1, #5]

It is given that $\triangle ABC$ is a right angled triangle where the length of the hypotenuse is 5-2x and the lengths of the other two sides are 9+x and 12 respectively. Find the value(s) of x. (2 marks)

3. [19-20 Standardized test 1, #6]

It is given that α and β are the roots of the equation $2x^2 - 8x + 1 = 0$.

Without solving for the values of α and β ,

(a) write down the value of $\alpha + \beta$ and $\alpha\beta$,

(1 mark)

- **(b)** form a quadratic equation in x such that its roots are $\frac{2}{\alpha^2}$ and $\frac{2}{\beta^2}$. (3 marks)
- 4. [19-20 Standardized test 1, #7]

In **Figure 1**, ABCD is a rectangle. E is a point on BC such that $\triangle ABE \sim \triangle ECD$. If AB = k, CE = 4 and AD = k + 9, where k is a non-zero constant, find the value(s) of k. Give your answer(s) in surd form if necessary. (3 marks) (Lv 3)

It is given that α and θ are the roots of the quadratic equation $3x^2 + 9x - 2 = 0$.

- 5. [19-20 Mid-year, #11]
- (a) Without solving the quadratic equation, find the values of

(i)
$$\left(1+\frac{1}{\alpha}\right)\left(1+\frac{1}{\beta}\right)$$
, and

(ii)
$$\alpha^2 + \beta^2$$
. (5 marks)

(b) Form a quadratic equation in x with roots $\left(1 + \frac{1}{\alpha}\right)\left(1 + \frac{1}{\beta}\right)$ and $\alpha^2 + \beta^2$. **(2 marks)**

- 6. [19-20 Mid-year, #14]
 - (a) Solve $2x^2 + \sqrt{12}x 3 = 0$ and express the answers in surd form. (2 marks)

(b) Hence, or otherwise, solve
$$2\left(\frac{y-\sqrt{3}}{2}\right)^2 + \sqrt{12}\left(\frac{y-\sqrt{3}}{2}\right) - 3 = 0$$
. **(2 marks)**

7. [19-20 Mid-year, #15]

Let $f(x) = 3x^2 + (6-6k)x + 4k^2 - 6k + 5$, where *k* is a real constant.

- (a) Does the graph of y = f(x) touch the x-axis? Explain your answer. (3 marks)
- Using the method of completing the square, express the coordinates of the vertex of the graph of y = f(x) in terms of k. (3 marks)
- 8. [19-20 Mid-year, #16]

Solve $x^2 + nx + x = 2n^2 + n$, where n is a constant. Express your answers in terms of n.(3 marks)

[20-21]

9. [20-21 Mid-year, #2]

Solve 2(3x-1) = 3(x+1). Leave your answer in surd form if necessary. (3 marks)

10. [20-21 Mid-year, #4]

 α and β are roots of quadratic equation $2x^2 + 3x + 7 = 0$.

(a) Write down the values of $\alpha + \beta$ and $\alpha\beta$.

(1 mark)

- **(b)** Form a quadratic equation in x with roots $\frac{1}{2\alpha}$ and $\frac{1}{2\beta}$ (3 marks)
- 11. [20-21 Mid-year, #6]

In **Figure 2**, ABCD is a rectangle, with AB = 6 cm and BC = 8 cm. $\triangle DEF$ is cut away from the rectangle, where ED = (x + 1) cm and DF = x cm. If the area of ABCFE is 43.625 cm², find the value of x.

(3 marks)

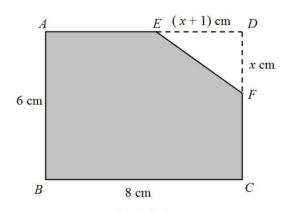


Figure 2

12. [20-21 Final Exam, #10]

If $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ are the roots of the quadratic equation $3x^2 - 6x - 1 = 0$,

(a) find the values of $\alpha\beta$ and $\alpha + \beta$, and

(3 marks)

(b) form a quadratic equation in x whose roots are $4\alpha^2$ and $4\beta^2$.

(3 marks)

[21-22]

13. [21-22 Mid-year, #5]

It is given that -5 is a root of the equation $2x^2 + 7x + k = 0$, where k is a constant.

(a) Find the value of k.

(2 marks)

(b) Find the other root of the equation.

(1 marks)

14. [21-22 Mid year, #8]

It is given that the quadratic equation (x - 1)(x - 3) + k = 0, where k is a constant, has two distinct real roots.

(a) Find the range of values of k.

(3 marks)

(b) Hence, find the roots of the equation for the largest integral value of k in (a).

(2 marks)

15. [21-22 Mid-year, #13]

Figure 3 shows the graph of $y = x^2 - rx + 1$, where *r* is a constant.

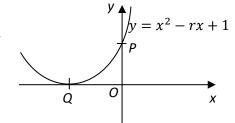
The graph intersects the y-axis at P and touches the x-axis at Q.

(a) Find the value of r.

(2 marks)

(b) Find the area of $\triangle OPQ$.

(2 marks)



16. [21-22 Mid-year, #15]

Figure 4 shows the graph of $y = x^2 + 3kx + 27$. It cuts the x-axis at the points $A(\alpha, 0)$ and $B(\beta, 0)$. It is given that $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{8}{9}$.

- (a) Find the value of k. (3 marks)
- (b) A student claims that the roots of $x^2 + 3kx + 27 = 0$ are irrational. Do you agree? (2 marks) Explain your answer.
- (c) Without using a calculator, find the value of $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$. (3 marks)

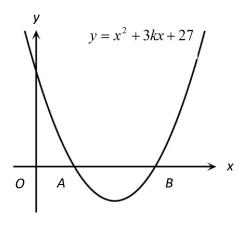


Figure 4

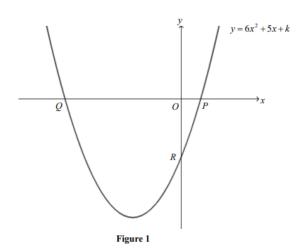
17. [21-22 Final, #9]

It is given that the graph of $y = 6x^2 + 5x + k$, where k is a real constant, cuts the x-axis at two distinct points P and Q.

(a) Find the range of values of k.

(3 marks)

(b) Figure 1 shows the graph of $y = 6x^2 + 5x + k$. The graph cuts the y-axis at R. Take the largest possible non-positive integral value of k, find the area of $\triangle PQR$. (2 marks)



18. [21-22 S.5 Final Exam, #10]

It is given that $x^2 + 8x + 4k = 0$ has two equal roots.

(a) Find the value of k.

(3 marks)

(b) By using the value of k in (a), find the value of $\alpha^2 + \beta^2$ if α and β are roots of $2x^2 + kx + 9 = 0$. (3 marks)

19. [21-22 Final, #11]

A wire of length 52 cm is bent into a rhombus *ABCD*. The diagonal *AC* and *BD* intersect at *E*. It is given that $AC = \frac{2}{x}$ cm and $BD = [\frac{8}{x} - 16]$ cm, where x > 0. Find the area if the rhombus. (5 marks)

[22-23]

20. [S.4 22-23 Mid-Year,#5]

In a right-angled triangle, the longest side is (2s+5) cm. The lengths of the other sides are (9-s) cm and 12 cm. Find s.

21. [S.4 22-23 Mid-Year,#6]

It is given that
$$f(x) = a(2x+1)(2x-1) + b$$
. If $f(0) = 2$ and $f(1) = 6$, find a and b . (4 marks)

22. [S.4 22-23 Mid-Year,#9]

Let k be a constant. It is given that the graph of $y = 2x^2 - 3x + k$ is always above the x-axis.

(a) Find the range of values of k.

(3 marks)

(b) Taking the minimum integral value of k found in (a), the graph of $y = 2x^2 - 3x + k - 4$ cuts the x-axis at A and B while it cuts the y-axis at C. Find the area of $\triangle ABC$. (3 marks)

23. [S.4 22-23 Mid-Year,#11]

It is given that $\alpha + 1$ and $\beta + 1$ are the roots of the equation $x^2 + 2x + 3 = 0$.

(a) Find $\alpha + \beta$ and $\alpha\beta$.

(2 marks)

- **(b)** Let $f(x) = x^2 + px + q$ such that α^2 and β^2 are roots of f(x) = 0.
 - (i) Find the values of p and q.
 - (ii) Let r be a constant. If f(x) = r has real roots, find the least value of r. (5 marks)

24. [S.4 22-23 Final,#4]

The quadratic equation $kx^2 - (k-6)x - 8 = 0$ has two equal real roots.

- (a) Find the values of k.
- (b) By using the smaller value of k in (a), write down the root of the equation. (4 marks)

25. [S.4 22-23 Final,#5]

If
$$f(x) = ax^2 + b$$
 and $6f(1) = f(2) = 18$,

- (a) find the values of a and b.
- **(b)** Write down the product of roots of the equation f(x) = 10x + 1.

(4 marks)

26. [S.4 22-23 Final,#10]

It is given that the difference between the two roots of the equation $4x^2 - 8x + k = 0$ is 5. Find

(a) the roots of the equation, and

(2 marks)

(b) the value of *k*.

(2 marks)

27. [S.5 22-23 Mid-year,#20]

Let $f(x) = (x + 9)^2 + h$ and $g(x) = x^2 - 8kx - 6x + 16k^2 + 26k + 8$, where h and k are constants. On the same rectangular coordinate system, denote the vertex of the graph of y = g(x) by P and Q respectively.

- (a) Using the method of completing the square, express, in terms of k, the coordinates of Q.

 (2 marks)
- (b) If PQ = 12 units and P is vertically above Q, find the y-intercept of the graph of y = f(x).

 (3 marks)

28. [S.5 22-23 Final,#10]

Let $p(x) = -x^2 + 4x + 6k$, where k is a constant. The equation p(x) = 0 has equal roots.

(a) Find k. (2 marks)

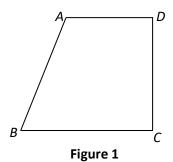
(b) Write down the *y*-intercept of the graph of y = p(x). **(1 mark)**

(c) Find the x-intercept(s) of the graph of y = p(x) + 16. (3 marks)

[23-24]

29. [S.4 23-24 Mid-Year,#9]

In **Figure 1**, ABCD is a trapezium with AD // BC, $\angle ADC = \angle BCD = 90^{\circ}$, AB = (10 - x) cm, BC = (6-2x) cm, CD = (3-3x) cm and AD = (10+x) cm. If the area of trapezium ABCD is 114 cm², find the perimeter of the trapezium.



30. [S.4 23-24 Mid-Year,#13]

Let h be a real constant. Suppose α and β are the roots of the quadratic equation $3x^2 + hx + 12 = 0$ such that $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{5}{12}$.

- (a) Find the value of h. (2 marks)
- **(b)** Alvin claims that the quadratic equation $(\alpha^2 + \beta^2)x^2 + x 3 = 0$ has no real roots. Do you agree? Explain your answer. **(3 marks)**

31. [S.4 23-24 Final,#7]

Let k be a constant. It is given that the quadratic equation $x^2 + 3kx + 3k - 1 = 0$ has equal roots.

- (a) Find the value of k.
- **(b)** Solve $x^2 + 3kx + 3k 1 = 0$.

(4 marks)

32. [S.5 23-24 Mid-year,#7]

Let $p(x) = 2x^2 - ax + 6 - a$, where a > 0. The equation p(x) = 0 has equal roots.

- (a) Find the value of a,
- **(b)** Solve the equation p(x) = ax a.

(5 marks)

33. [S.5 23-24 Mid-year,#18]

It is given that α and β are the roots of the equation (2x-m)(x-2)-1=0, where m is a constant.

(a) Express $\alpha + \beta$ in terms of m.

(2 marks)

(b) The 1st, 2nd and 3rd term of a geometric sequence are $3^{2\alpha}$, 9 and $3^{2\beta}$ respectively. Find the value of m. (3 marks)

34. [S.6 23-24 Timed Practice 3,#9]

It is given that the length and the width of a rectangle are (3k-4) cm and (2k-3) cm respectively, where k is an integer. If the area of the rectangle is less than 15 cm². Find the maximum value of k.

(3 marks)