(4A)Ch.1

GHS Past Paper Question Bank - Conventional Question

Page 1 of 2

Number Systems

Number Systems Conventional Questions

[19-20]

1. [S.4 19-20 Standardized test 1, #4]

- (a) Simplify $\frac{26}{2+3i}$ and express the answer in the form of a+bi, where a and b are real numbers. (2 marks)
- **(b)** If $\frac{26}{2+3i} + (c+ci)(-5+ci)$ is a real number, where c is a real constant, find the value(s) of c. (2 marks)

2. [S.4 19-20 Mid-year, #6]

It is given that z = 2i(7 + ki) + 4, where k is a real number. If z is purely imaginary, find the value of k.

(2 marks)

3. [S.4 19-20 Mid-year, #8]

The sum of the squares of 3 consecutive positive integers is 302. Find the largest integer. (3 marks)

4. [S.4 19-20 Mid-year, #12]

- (a) Express $\frac{1}{2-5i}$ in the form of a+bi. (2 marks)
- (b) If $\frac{29}{2-5i}$ is a root of the quadratic equation $mx^2 + px + q = 0$, where p and q are real numbers, find the values of the p and q. (2 marks)

[21-22]

5. [S.4 21-22 Mid-year. #12]

Let
$$z = \frac{1}{4-3i}$$
.

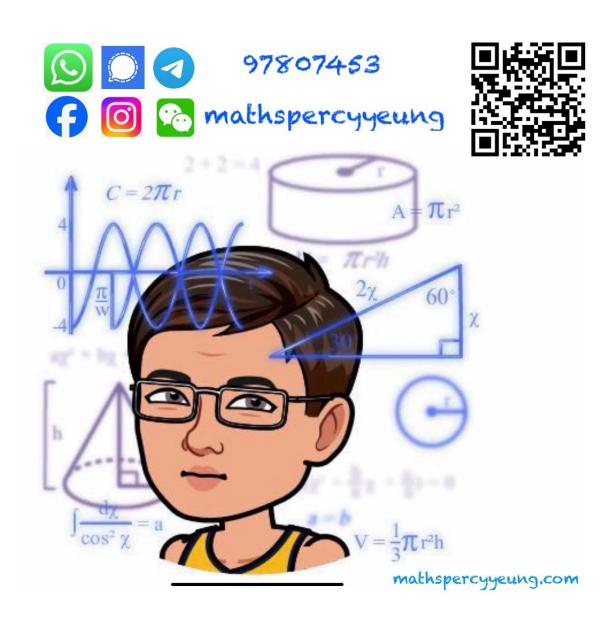
- (a) Express z in the form of a + bi, where a and b are real numbers. (2 marks)
- (b) If kz 2 + hi = 0, where h and k are real numbers, find the value of h. (3 marks)

[22-23]

6. [S.4 22-23 Mid-Year,#10]

Express
$$\frac{2+i}{3-5i}$$
 in the form $a+bi$, where a and b are real numbers. (2 marks)

[23-24]


7. [S.4 23-24 Mid-Year,#11]

The real part of $\frac{k}{7-i}$ is 14, where k is real number. Find the value of k. (3 marks)

8. [S.4 23-24 Mid-Year,#12]

It is given that (a+6i)(3-2i) = 27+2bi, where a and b are real numbers. Find the values of a and b. (4 marks)

~End~

Ch.1 Number Systems Multiple Choice Question

[19-20]

1. [19-20 Standardized test 1, #4]

Simplify $(\sqrt{3}+i)(\sqrt{27}-3i)$.

- **A.** 6
- **B.** 12
- **C.** $6 + 6\sqrt{3}i$
- **D.** $12 + 6\sqrt{3}i$

2. [19-20 Standardized test 1, #6]

 $i^{2019} - i^{11} - i^5 =$

- $\mathbf{A} \cdot -i$.
- **B.** *i*.
- C. -1.
- **D.** -3i.

3. [19-20 Mid-year, #4]

 $-(i^7)^5 =$

- **A.** *i*.
- **B.** -i.
- **C.** 1.
- **D.** -1.

4. [19-20 Mid-year, #5]

It is given that xi(5+2i) = -y + 15i, where x and y are real numbers. Find the values of x and y.

- **A.** x = 3, y = 6
- **B.** x = 3, y = -6
- C. x = -3, y = 6
- **D.** x = -3, y = -6

5. [19-20 Mid-year, #10]

Which of the following are true?

- I. The sum of two irrational numbers may be a rational number.
- II. The product of a rational number and an irrational number may be a rational number.
- III. 2.019 is a rational number.
 - **A.** I and II only
 - **B.** I and III only
 - C. II and III only
 - **D.** I, II and III

[20-21]

6. [20-21 Mid-year, #11]

Find the real part of $\frac{p+3i}{p-3i}$ if p is a real number.

A.
$$\frac{p^2+9}{p^2-9}$$

B.
$$\frac{p^2-9}{p^2+9}$$

C.
$$\frac{6p}{p^2-9}$$

D.
$$\frac{6p}{p^2+9}$$

7. [20-21 Final Exam, #20]

Let z = (2+3i)(k+i), where k is a real number. If z is purely imaginary, then k =

A.
$$-1$$

B.
$$-\frac{2}{3}$$
.

D.
$$\frac{3}{2}$$
.

8. [20-21 Final Exam, #21]

The imaginary part of $3i + 6i^2 + 9i^3 + 12i^4$ is

- **A.** −9.
- **B.** −6.
- **C.** 3.
- **D.** 12.

9. [20-21 S.5 Final Exam, #33]

If k is a real number, then the real part of $\frac{2-i^6}{k-i}$ is

- $\mathbf{A.} \ \frac{-k}{k^2+1}.$
- **B.** $\frac{1}{k^2+1}$.
- $\mathbf{C.} \ \frac{k}{k^2+1}.$
- **D.** $\frac{3k}{k^2+1}$.

[21-22]

10. [21-22 Mid-year, #19]

If p is a real number, then the imaginary part of $\frac{5pi+i^{22}}{3p-i^{21}}$ is

- **A.** $\frac{5}{3}$.
- **B.** $\frac{-8p}{9p^2+1}$.
- C. $\frac{15p^2-1}{9p^2-1}$.
- $\mathbf{D.} \qquad \frac{15p^2 1}{9p^2 + 1} \ .$

11. [21-22 Mid-year, #20]

Let β be a real number. Define $u = w + \frac{2}{w}$ and $v = w - \frac{2}{w}$, where $w = 1 - \beta i$. Which of the following must be true?

- I. The real part of u+v is 2.
- II. The real part of u and the real part of v are the same.
- III. *uv* is a rational number.
- **A.** I only
- **B.** II only
- **C.** I and III only
- **D.** II and III only

12. [21-22 Final exam, #15]

If k and $\frac{10}{3-i} + ki - i^2$ are real numbers, then k =

- **A.** -1.
- **B.** 0.
- **C.** 1.
- **D.** 4.

13. [21-22 S.5 Mid-year, #26]

Define $z_1 = \frac{3-ki}{1+i}$ and $z_2 = \frac{5(k+7i)}{2-i}$, where k is a real number. If z_1 is a purely imaginary number, then the real part of z_2 is

- **A.** -13.
- **B.** -1.
- **C.** 11.
- **D.** 17.

14. [21-22 S.5 Final Exam, #21]

If a is a real number, then the real part of $\frac{6i^{13} - 5ai^{10}}{2 - i}$ is

- **A.** $\frac{10a+6}{3}$.
- **B.** $\frac{10a-6}{5}$.
- C. $\frac{5a+12}{3}$.
- **D.** $\frac{5a+12}{5}$.

15. [21-22 S.6 Mock, #35]

If k and $\frac{i^{456}}{1-i^{2021}}$ +ki are real numbers, then k =

- A. -1.
 B. $-\frac{1}{2}$.
 C. $\frac{1}{2}$.
 D. 1.

[22-23]

16. [S.4 22-23 Mid-Year,#7]

Let α be a real number. Which of the following are real numbers?

- I. $-\sqrt{a^2}$
- II. $\sqrt{-a^2}$ III. $-\sqrt{(-a)^2}$
- A. I and II only
- **B.** I and III only
- C. II and III only
- D. I, II and III

17. [S.4 22-23 Mid-Year,#15]

If a and (2+3i)(-1-ai)+6i are real numbers, then a =

- **A.** $\frac{3}{2}$.
- C. $-\frac{2}{3}$.
- **D.** $-\frac{3}{2}$.

18. [S.4 22-23 Mid-Year,#16]

$$i^{23}(7-ki)_{=}$$

- A. k+7i.
- **B.** k 7i.
- C. -k+7i.
- **D.** -k 7i.

19. [S.5 22-23 mid-year,#25]

If a is a real number, then the real part of $\frac{6+i^7}{a-i}+i^2$ is

- **A.** $\frac{6a-a^2}{a^2+1}$.
- **B.** $\frac{6-a}{a^2+1}$.
- C. $\frac{6a-a^2}{a^2-1}$.
- **D.** $\frac{6-a}{a^2-1}$.

20. [S.5 22-23 Final,#33]

Let $z = 9i + 8i^2 + 7i^3 + 6i^4 + ki^5$, where k is a real number. If the real part and the imaginary part of z are equal, then the imaginary part of z is

- **A.** –4.
- **B.** −2.
- **C.** 0.
- **D.** 2.

21. [S.6 22-23 Timed Practice 2,#34]

If u is a real number, then the imaginary part of $\frac{3+i^7}{u-4i^5}+i^4$ is

- **A.** $\frac{u^2 + 3u + 20}{u^2 + 16}.$
- $\mathbf{B.} \quad \frac{u^2 + 3u + 20}{u^2 16}.$
- C. $\frac{12-u}{u^2+16}$.
- **D.** $\frac{12-u}{u^2-16}$.

22. [S.6 22-23 Timed Practice 4,#34]

If k is a real number, then the imaginary part of $-\frac{2+8ki}{2i}-i(3k+i)$ is

A. -3k.

- **B.** 3k-1.
- **C.** 1 4k.
- **D.** 1 3k.

23. [S.6 22-23 Timed Practice 5,#38]

If k is a real number, then the imaginary part of $\frac{(3+i)(1-2i)}{1+ki}$ is

- **A.** $-\frac{5+5k}{1+k^2}$.
- **B.** $\frac{5+5k}{1+k^2}$.
- C. $\frac{5-5k}{1+k^2}$.
- **D.** $\frac{5k-5}{1+k^2}$.

24. [S.6 22-23 Timed Practice 6,#34]

If *k* is a real number, then the real part of $\frac{6-i^5}{2i^4+ki^3}$ is

- **A.** $\frac{-2 + 6k}{4 k^2}$.
- **B.** $\frac{12 + k}{4 k^2}$.
- C. $\frac{-2 + 6k}{4 + k^2}$.
- **D.** $\frac{12 + k}{4 + k^2}$.

25. [22-23 S6 Mock,#35]

If k is a real number, then the imaginary part of $\frac{i^{28} + i^{23}}{k - i} + i^{17}$ is

- **A.** $\frac{k^2 k + 2}{k^2 + 1}$.
- $\mathbf{B.} \qquad \frac{k+1}{k^2+1} \, .$
- $\mathbf{c.} \quad \frac{-k(k+1)}{k^2+1}.$
- **D.** $\frac{k+1}{k-1}$.

[23-24]

26. [S.4 23-24 Mid-Year,#14]

The imaginary part of $3i^{13} + 4i^{16} + 5i^{19} - 6i^{22}$ is

- **A.** −9.
- **B.** -2.
- **C.** 8.
- **D.** 10.

27. [S.4 23-24 Mid-Year,#20]

If $g = \frac{4}{1-ki}$ and $h = \frac{4}{1+ki}$, where k is a real number, which of the followings must be true?

- I. gh is a real number.
- II. The real part of g is equal to the real part of h.

III. $\frac{1}{g} - \frac{1}{h}$ is a purely imaginary number.

- **A.** I and II only
- **B.** I and III only
- C. II and III only
- **D.** I, II and III

28. [S.4 23-24 Final,#20]

$$\frac{i^{2023} + 2i^{2024}}{3 + i} =$$

- **A.** $\frac{1}{2} \frac{1}{2}i$.
- **B.** $-\frac{1}{2} + \frac{1}{2}i$.
- **c.** $-\frac{7}{10} \frac{1}{10}i$.
- **D.** $\frac{7}{10} + \frac{1}{10}i$.

28. [S.5 23-24 Mid-year,#25]

If k is a real number, then the real part of $\frac{k^2}{k+i^3} + \frac{1}{k-i^3}$ is

$$\mathbf{A.} \quad \frac{k-1}{k+1}.$$

B.
$$k^2 - 1$$
.

C.
$$k^2 + 1$$
.

29. [S.5 23-24 Final,#34]

Let $z = 6 - ai^{11} + 4ai^{14} + 32i^{16} + 8i^{17}$, where a is a real number. If the real part and the imaginary part are equal, then the imaginary part of z is

- **A.** 8.
- **B.** 10.
- **C.** 14.
- **D.** 18.

30. [S.6 23-24 Timed Practice 2,#28]

Let $u = \frac{5}{x-2i}$ and $v = \frac{5}{x+2i}$, where x is a real

number. Which of the following must be true?

- I. u + v is a rational number.
- II. Real part of u is equal to real part of v.
- III. $\frac{1}{u} + \frac{1}{v}$ is a real number.
- A. I only
- B. II only
- C. I and III only
- D. II and III only

31. [S.6 23-24 Timed Practice 4,#27]

Let x be a real number. $\frac{3x-i}{i} - (2-xi) =$

- A. -3-2xi.
- **B.** -1-4xi.
- C. (3x-3)-xi.
- **D.** (3x-3)+xi.

32. [S.6 23-24 Timed Practice 6,#35]

The real part of $1+2i+(2i)^2+(2i)^3+...+(2i)^{67}$ is

- A. $\frac{1+2^{68}}{5}$.
- B. $\frac{1-2^{68}}{5}$.
- C. $1+2^{68}$.
- D. $1-2^{68}$.

~End~