

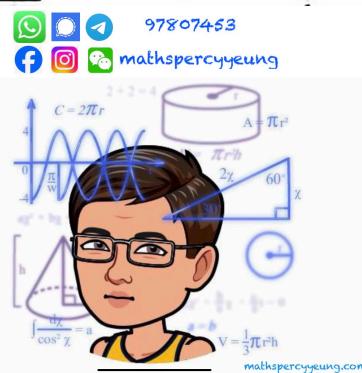
DGS CH3-4 Basic Algebra notes

Ch 3 Using Algebra to Solve Problems (I)

Distributive Law of Multiplication

A rectangle P of dimension $(x + y)$ by a is cut into two small rectangles Q and R , as shown below.

Area of rectangle P = _____


Area of rectangle Q = _____

Area of rectangle R = _____

Conclusion: _____

$$a(x+y) = \text{_____}$$

$$(x+y)a = \text{_____}$$

Solve the following equations.

(a) $y + 13 = 22$

(b) $3z = 21$

(c) $2x + 3 = 11$

(d) $9 + \frac{v}{4} = 25$

(e) $\frac{9+v}{4} = 25$

(f) $-2(x+3) = 16$

(g) $6(x-2) - 4x = 6$

(h) $n+3 = \frac{3}{4}n - \frac{1}{2}$

(i) $\frac{2n-1}{3} + \frac{2n-3}{5} = -2$

3.1 Basic Concepts of Algebra (Algebra: using _____ to represent _____.)Algebraic Expressions

+ : $n+5$	$\times : n \times 5 /$ _____	→
- : $n-5$	$\div : n \div 5$	⇒

Terms of Algebraic Expressions

An algebraic expression is divided into terms by _____ () and _____ ().

 $x+3y-5z-7$ (___ terms) $4 \times a+1 \div b$ (___ terms) $3(-4)ab$ (___ terms)

1. Represent the following word phrases by an algebraic expression.
 - (a) Add 4 to the product of 6 and n .
 - (b) Subtract 7 from n and then divide the difference by 3.
2. Emily has \$56 and she gets n red packets of \$20 during the day. If she uses half of the money she has to buy a present, how much does the present cost?

1.

Terms	Meaning	Example
Constant Terms	Terms with _____ only.	$5, -4, \frac{2}{3}$
Like Terms	Terms with same _____.	$3x, 7x$ $4ab, -7ba$ $9y^2, -y^2$
Unlike Terms	Terms with _____.	$4a, 4b$ $5c^2d, -4cd^2$ $-2p, -p^2$

2. Are constant terms like terms? _____

3. Consider the following terms:

 $-5m^3n, 4mn^3, -3mn, 2m^3n, -mn^3$

a) Identify all pairs of like terms. _____

b) Identify two pairs of unlike terms. _____

Simplifying Algebraic Expressions

$$2a^2 + 5a^2 =$$

$$3ab - ab =$$

$$5x + \frac{2x}{3} =$$

Simplify the following expressions.

(a) $2 \times a \div 3$

(b) $a \times a + b \div 3$

(c) $6x^3y - 4xy$

(d) $4a - \frac{2a}{3}$

(e) $3a^2 + 3a + 1 - 4a + 5a^2 - 8$

(f) $4a + a^2 - \frac{a}{2} + 1 - 3a^2$

3.2 Linear Equations in One UnknownSolving Equations: The Balancing Method

- Reverse the order of the operations
- Original operations: $+ - \times \div$
Reverse operations: _____
- Apply the “reverse operation” on both sides of the equation
- Check the solution!!

Solving more complicated equations:

1) There are more than one term with “ x ”. (E.g. $x + 3 = 2x - 1$) _____

2) There are brackets. _____

2.3 Formulating Equations

A team of boys and girls joined a cross country race. There are 4 more boys than girls. Each boy runs 5 km, while each girl runs 3 km. If the total distance run by this team is 52 km, find the number of boys who joined the race.

Step 1: Let x be _____

Step 2: Number of girls = _____

Total distance run by the boys = _____

Total distance run by the girls = _____

Equation: _____

Step 3: Solve the equation in step 2.

Step 4: Answer the question.

Step 5: Check the answer!

1. The price of an adult ticket and a student ticket to a wetland park are \$30 and \$15 respectively. If the total ticket price for a group of 20 adults and students is \$420, find the number of adults in the group.
2. Ken has \$80 originally and he gives part of the money to Tony. After spending $\frac{3}{5}$ of the money received from Ken, Tony now has \$10 less than Ken's remaining amount. Find the amount of money that Ken gives to Tony.

4.1 Formulae and Method of Substitution

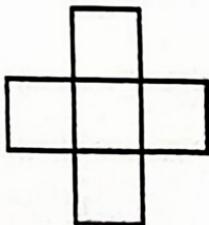
<p>1. A triangle has base b cm and height h cm. Let A cm^2 be the area of the triangle.</p> <p>2. A car travels with a uniform speed of c km/h for t hours. Let D km be the distance travelled by the car.</p> <p>3. The figure below shows a pattern of hearts formed by some sticks. Let n be the number of hearts and T be the total number of sticks.</p>	<p>$A = \underline{\hspace{2cm}}$</p> <p>$D = \underline{\hspace{2cm}}$</p> <p>$T = \underline{\hspace{2cm}}$</p>
---	--

- A **formula** represents a _____ between 2 or more unknowns / variables.
- The **subject** of a formula is the _____ on the _____ of the formula.

Examples: _____

Method of Substitution

In the formula $A = \pi r^2$: when $r = 2$, $A = \underline{\hspace{2cm}}$.

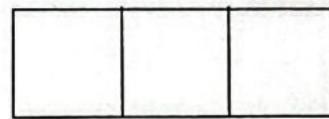
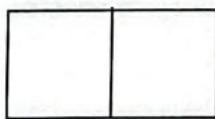

when $r = 5$, $A = \underline{\hspace{2cm}}$.

when $r = 7$, $A = \underline{\hspace{2cm}}$. (Leave the answer in terms of π .)

1. The figure shows the net of an opened top cube.

(a) If the side length of each square is 3 cm, find the outer surface area of the cube.

(b) Suppose the side length of each square is d cm and the outer surface area of the cube is A cm^2 . Express A in terms of d .



(c) Find the value of d if the outer surface area of the cube is 180 cm^2 .

(c) 2, 4, 8, 16, _____
(d) 324, 108, 36, 12 _____

3. The general term of a sequence is $2n^2 - 1$.

(a) Find the 10th term of the sequence.
(b) Which term of the sequence has a value of 449?

4. The following figure shows a pattern formed by match sticks.

(a) Fill in the table below to see how the number of match sticks (m) is depended on the number of squares (s) formed.

s	1	2	3	4	5	...	s
m	4					...	$m =$ _____

(b) Use different ways to analyze the match stick pattern to obtain the formula relating m and s .

4.2 Sequences

A sequence is a _____ arranged in order.

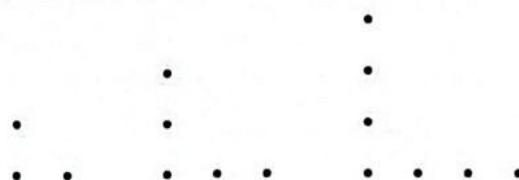
1, 2, 3, 4, ...

Set $a_1 = 1$ _____

$a_2 = 2$ _____

⋮

$a_n = \underline{\hspace{2cm}}$ _____ of the sequence


Some Special Sequences(1) A fixed difference between terms

E.g. _____

(2) A fixed multiple of the previous term

E.g. _____

1.

$n = 1$

$n = 2$

$n = 3$

Let a_n be the number of dots in the n^{th} pattern as shown above.

(a) Write down the terms a_n for $n = 1, 2, 3$. _____

(b) Guess the values of a_4 and a_5 . _____

(c) Guess the value of a_0 , and express a_1, a_2, a_3 and a_4 in terms of a_0 .

$a_1 =$

$a_2 =$

$a_3 =$

$a_4 =$

(d) Hence deduce the general term a_n . _____

2. Write down the next two terms and the general term in the following sequences.

(a) 4, 7, 10, 13, _____

(b) 36, 31, 26, 21, _____