

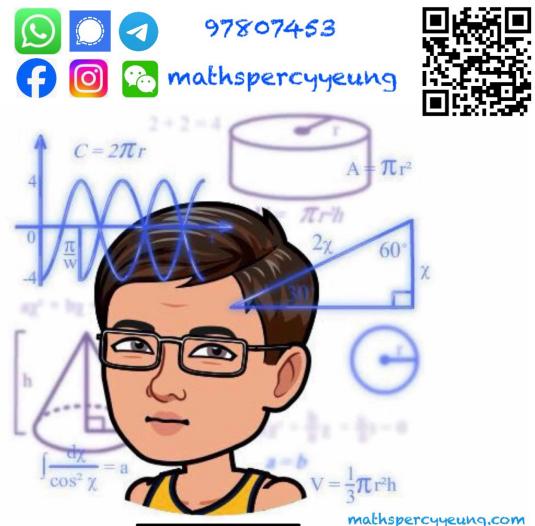
Section A: Multiple-Choice Questions

- Which of the following is/are true?
 - The sum of two negative numbers must be negative.
 - The product of two negative numbers may be negative.
 - The difference between two negative numbers may be positive.

A. I only B. I and II only C. I and III only D. I, II and III
- Find the sum of the L.C.M and H.C.F. of 24, 42 and 60.

A. 840 B. 846 C. 1680 D. 1686
- Which of the following is correct?

A. $20 - (7 - 2) = 20 - 7 - 2$ C. $50 - 10 - 5 = 50 - (10 - 5)$
 B. $20 - [(-7) + (-2)] = 20 + 7 - 2$ D. $38 - (-5 + 4) = 38 + 5 - 4$
- When 165 and 203 are divided by n , the remainders are and 5 respectively. Find the possible number of values of n .


A. 3 B. 4 C. 5 D. 6
- Which of the following is a pair/are pairs of UNLIKE terms?

I. $2b, -\frac{b}{3}$ II. $6a, \frac{6}{a}$ III. $3c^2, 2c^3$
 A. I only B. I and II only C. II and III only D. I, II and III

Section B: Conventional Questions

- Calculate $3 - 2^4 + (-5)^2 - 4 \times (-3)^2$.

- Solve the equation $\frac{x-2}{6} - \frac{3}{8}(x+2) = 2 + \frac{x+4}{6}$.

3. Mary has some identical rectangular pieces of paper measuring 20 cm by 36 cm. If she puts the papers together without overlapping to form a square, find the least number of papers that are needed.
4. Amy poured some water at 25°C into a container. She then put the container into a refrigerator to make ice. The temperature inside the refrigerator was kept at -12°C , and the temperature of water dropped by 3°C every hour in the refrigerator. If x hours (x is an integer) is needed for the water in the container to reach -12°C , find the smallest value of x .
5. Two years ago from now, the sum of the ages of Amy and Jenny was 53. 10 years later from now, Amy's age will be $\frac{5}{6}$ of Jenny's. How old is Amy now?
6. Eric and Ken are running along the same track in the same direction. Their starting points were 1 km apart with Ken being in the front. They started running together and they met after 15 min. It is known that Eric's running speed was 16 km/h. Find the running speed of Ken.