F.6 Mathematics

MC Exercise

6-2 Geometric Sequences

- 1. It is given that the general term of a geometric sequence is $T_n = \left(-\frac{3}{5}\right)^{2n-1}$. Find the common ratio of the sequence.
 - A. $-\frac{3}{5}$
 - B. $\frac{3}{5}$
 - C. $-\frac{9}{25}$
 - D. $\frac{9}{25}$
- 2. Find the general term T_n of the geometric sequence 12, -24, 48, -96, ...
 - A. $-3(2)^n$
 - B. $-3(2)^{n+1}$
 - C. $3(-2)^n$
 - D. $3(-2)^{n+1}$
- 3. Find the number of terms in the geometric sequence a^6 , a^9 , a^{12} , ..., a^{60} .
 - A. 18
 - B. 19
 - C. 20
 - D. 21
- **4.** It is given that the (n+1) th term of a geometric sequence is $2(-3)^{2-n}$, where n > -1. Find the first term and the common ratio of the sequence.

	First term	Common ratio
A.	-6	$-\frac{1}{3}$
B.	-6	-3
C.	18	$-\frac{1}{3}$
D.	18	-3

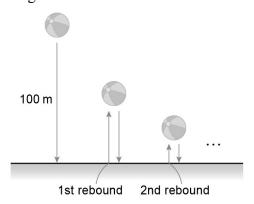
- 5. If the 3rd term and the 8th term of a geometric sequence are -63 and 15 309 respectively, then the common ratio of the sequence is
 - A. -7.
 - B. -3.
 - C. ±3.
 - D. ±7.
- 6. If x+1, 4x+4, 160-2x form a geometric sequence, find the value(s) of x.
 - A. 17
 - B. 8
 - C. -1
 - D. 8 or -1
- 7. If a, b, c form a geometric sequence, where a+b+c=6 and abc=-64, then a+c=
 - A. -4.
 - B. 2.
 - C. 4.
 - D. 10.

- 8. If x, y, z form a geometric sequence with the common ratio of r, then the common ratio of the geometric sequence $3x^2$, $3y^2$, $3z^2$ is
 - A. 2*r*.
 - B. 3*r*.
 - C. r^2 .
 - D. r^3 .
- **9.** Which of the following must be true?
 - I. A sequence with the general term $T_n = \frac{4^{n+2}}{7^{2n-1}} \text{ is a geometric sequence.}$
 - II. A sequence with the general term $T_n = \frac{2^{n^2+1}}{3^{n^2+3}} \text{ is a geometric sequence.}$
 - III. A sequence with the general term T_n , where $T_2 = 40$, $T_4 = 10$ and $T_6 = \frac{5}{4}$, is a geometric sequence.
 - A. I only
 - B. I and II only
 - C. II and III only
 - D. I, II and III
- 10. Consider the geometric sequence -288, -192, -128, \cdots . If the *k*th term of the sequence is greater than -0.1, find the minimum value of *k*.
 - A. 19
 - B. 20
 - C. 21
 - D. 22

- 11. Let T_n be the general term of a geometric sequence with common ratio r, where 0 < r < 1. It is given that $T_1 + T_2 + T_3 = 19$ and $T_1T_2T_3 = 216$. Find $T_1 T_3$.
 - A. 5
 - B. $\sqrt{97}$
 - C. 13
 - D. Cannot be determined
- 12. Find the sum of the first 7 terms of the geometric sequence 4, 20, 100, 500,
 - A. 15 624
 - B. 62 500
 - C. 78 124
 - D. 390 624
- 13. Find the value of the geometric series $2^2 + 2^4 + 2^6 + \cdots + 2^{14}$.
 - A. 16383
 - B. 21844
 - C. 32 766
 - D. 65 532
- 14. It is given that $a \neq b$ and $b \neq 1$. The value of the geometric series $a^{100} + a^{99}b + a^{98}b^2 + \cdots + b^{100}$ is
 - A. $\frac{a^{100}(b^{100}-1)}{b-1}$.
 - B. $\frac{a^{100}(b^{101}-1)}{b-1}$.
 - C. $\frac{b^{100}-a^{100}}{b-a}$.
 - D. $\frac{b^{101}-a^{101}}{b-a}$.

- 15. If the sum of the first m terms of the geometric sequence -12, -48, -192, \cdots is smaller than -10^6 , find the minimum value of m.
 - A. 7
 - B. 8
 - C. 9
 - D. 10
- 16. Find the sum of all positive terms of the geometric sequence -3, 6, -12, 24, -48, 96, \cdots , 24 576.
 - A. 8 190
 - B. 16 383
 - C. 32 766
 - D. 49 149
- 17. Find the sum of the 6th to 10th terms of the geometric sequence $7, -21, 63, \cdots$.
 - A. -104 608
 - B. -103 761
 - C. -34 587
 - D. 309 582
- 18. The sum of the first 3 terms of a geometric sequence is 1 008, and the sum of the following 3 terms is -126. Find the common ratio of the sequence.
 - A. -8
 - B. $-\frac{1}{8}$
 - C. –2
 - D. $-\frac{1}{2}$

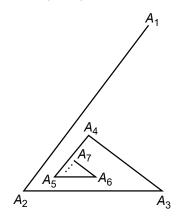
- 19. $9 \times 9^3 \times 9^9 \times 9^{27} \times \cdots \times 9^{3^n} =$
 - A. 3^{3^n} .
 - B. $3^{3^{n+1}-1}$.
 - C. $3^{\frac{3}{2}(3^n+1)}$.
 - D. 3^{n+2} .
- **20.** Let a_n be the *n*th term of a geometric sequence. If $a_4 > 0$ and $a_7 < 0$, which of the following must be true?
 - I. $a_1 < 0$
 - II. $a_3 = \sqrt{a_2 a_4}$
 - III. $a_1 + a_2 + a_3 + \dots + a_7 < 0$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 21. Find the value of the geometric series $6+0.6+0.06+\cdots$
 - A. $\frac{2}{3}$
 - B. 666
 - C. 667
 - D. $6\frac{2}{3}$
- **22.** Find the value of

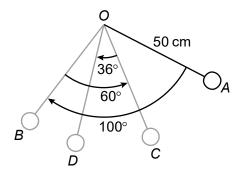

$$\frac{1}{3} - \frac{2}{3^2} + \frac{1}{3^3} - \frac{2}{3^4} + \frac{1}{3^5} - \frac{2}{3^6} + \cdots$$

- A. $\frac{1}{8}$
- B. $\frac{1}{5}$
- C. $\frac{5}{8}$
- D. 1

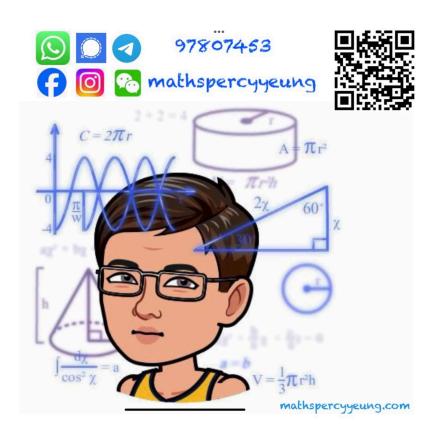
- 23. It is given that the sum to infinity of a geometric sequence is 35 and the first term is 20. Find the common ratio of the sequence.
 - A. $-\frac{4}{7}$
 - B. $-\frac{3}{7}$
 - C. $\frac{3}{7}$
 - D. $\frac{4}{7}$
- 24. If $1 + \sin\theta + \sin^2\theta + \dots = 2(2 + \sqrt{3})$, where $0^\circ < \theta < 90^\circ$, find the value(s) of $\cos\theta$.
 - A. $\frac{1}{2}$
 - B. $\frac{\sqrt{3}}{2}$
 - C. $\frac{1}{2}$ or $-\frac{1}{2}$
 - D. $\frac{\sqrt{3}}{2}$ or $-\frac{\sqrt{3}}{2}$
- **25.** It is given that 4, k and $k \frac{8}{9}$ are the first 3 terms of a geometric sequence. Find the sum to infinity of the sequence.
 - A. $\frac{1}{3}$
 - B. $\frac{4}{3}$
 - C. 6
 - D. 6 or 12
- 26. The 2nd and the 4th terms of a geometric sequence are -35 and $-\frac{35}{16}$ respectively. Find the sum to infinity of the sequence.

- A. $-\frac{560}{3}$
- B. $\frac{560}{3}$
- C. $\frac{560}{3}$ or -112
- D. $-\frac{560}{3}$ or 112
- 27. If the sum of the first 2 terms of a geometric sequence is 35 and the sum to infinity is 63, find the first term of the sequence.
 - A. -21
 - B. $\frac{2}{3}$ or $-\frac{2}{3}$
 - C. 28
 - D. 21 or 105
- **28.** It is given that the sum to infinity of the geometric sequence T_1, T_2, T_3, \cdots is $\frac{2}{3}T_1$. Find $T_2 + T_4 + T_6 + \cdots$.
 - A. $-\frac{2}{3}T_1$
 - B. $-\frac{1}{3}T_1$
 - C. $\frac{1}{3}T_1$
 - D. $\frac{4}{3}T_1$
- 29. Consider the geometric sequence x^2 , $3x^3$, $9x^4$, ... If the sum to infinity of the geometric sequence exists, which of the following is a possible value of x?
 - A. 0
 - B. $\frac{1}{2}$
 - C. $\frac{1}{3}$
 - D. $\frac{1}{4}$


- **30.** Air is leaking out from a balloon. In the first minute, 30 cm³ of air leaks out from the balloon. After that, the volume of air leaked in each minute is 70% of that in the preceding minute. What is the total volume of air leaked in the first 5 minutes?
 - A. 5.0421 cm^3
 - B. 42.753 cm³
 - C. 75.99 cm^3
 - D. 83.193 cm³
- **31.** A ball is dropped from a spot of 100 m above the ground. After each rebound, the ball only rises to half of its preceding height.


How many rebounds will the ball make when it travels a distance of 290 m?

- A. 4
- B. 5
- C. 6
- D. 7
- 32. Raymond's monthly salary is \$10 000 this year and it increases by 10% each year. If Raymond saves 20% of his monthly salary every month, at least how many years later will his total savings exceed \$200 000?
 - A. 6 years
 - B. 7 years
 - C. 8 years
 - D. 9 years


33. The figure is formed by an infinite number of line segments A_1A_2 , A_2A_3 , A_3A_4 , ..., where $A_2A_3 = \frac{2}{3}A_1A_2$, $A_3A_4 = \frac{2}{3}A_2A_3$, If $A_1A_2 = 90 \text{ cm}$, find $A_1A_2 + A_2A_3 + A_3A_4 + \cdots$.

- A. 54 cm
- B. 270 cm
- C. 405 cm
- D. 540 cm
- 34. The figure shows a pendulum with the length of 50 cm. It is released from A and it keeps swinging until it comes to rest. The angles swung $\angle AOB$, $\angle BOC$, $\angle COD$, \cdots form a geometric sequence. Find the total distance travelled by the end of the pendulum $\widehat{AB} + \widehat{BC} + \widehat{CD} + \cdots$.

- A. $\frac{125\pi}{3}$ cm
- B. $\frac{625\pi}{3}$ cm
- C. $\frac{625\pi}{9}$ cm
- D. $\frac{625\pi}{18}$ cm

