
F.5 Mathematics

MC Exercise

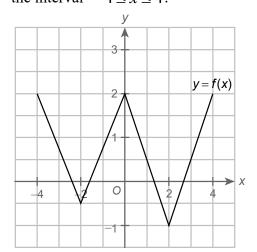
5B9 More About Graphs of Functions

- 1. Which of the following functions has / have the same domain as the function $y = \log(x 10)$?
 - I. $y = \log(x 10)^2$
 - II. $y = \log(10 x)$
 - III. $y = -\log(x 10)$
 - A. II only
 - B. III only
 - C. I and III only
 - D. None of the above
- 2. Find the domain of the function $y = \log(4 x) + \sqrt{x + 9}$.
 - A. All real numbers greater than or equal to 9
 - B. All real numbers smaller than 4
 - C. All real numbers x with $-9 \le x < 4$
 - D. All real numbers except 9 and 4
- 3. The figure shows the graph of the function $y = 2\cos kx^{\circ}$ where $0 \le x \le 540$ and k is a positive number. Find the value of k.

- A. $\frac{1}{3}$
- B. $\frac{1}{2}$
- C. 2
- D. 3

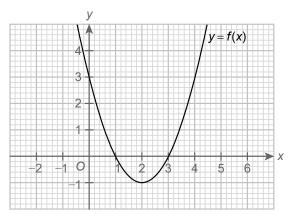
- 4. The maximum value of the function $(2\sin x^{\circ} + 1)^{2} 1$ is
 - A. -2.
 - B. -1.
 - C. 0.
 - D. 8.
- 5. Which of the following functions has the maximum value greater than 3?
 - A. $y = -x^2 + 4x$
 - B. $y = \log[x(x-3)]$
 - C. $y = 2\cos 3x$
 - D. $y = 2\sin^2 x$
- 6. Find the minimum value of the function

 -2

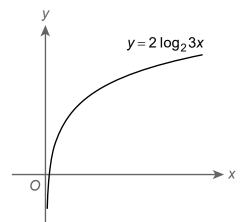

$$y = \frac{-2}{x^2 + 4x + 6}$$

- A. -4
- B. -2
- C. -1
- D. 0
- 7. Which of the following functions has / have at least one axis of symmetry in its graph?
 - I. $y = x^2 2x + 4$
 - II. $y = \tan 2x$
 - III. $y = 3^x$
 - A. I only
 - B. I and II only
 - C. I and III only
 - D. II and III only

8. Consider the function $y = \sin \frac{x^{\circ}}{2} + 1$.

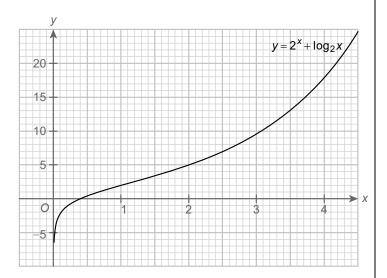

Which of the following are true?

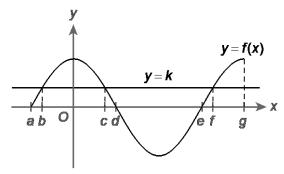
- I. The domain of the function is all real numbers.
- II. The maximum and minimum values of the function differ by 2.
- III. The period of the function is 180.
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- 9. The figure shows the graph of y = f(x) where $-4 \le x \le 4$. How many real root(s) does the equation 2f(x) + 2 = 0 have in the interval $-4 \le x \le 4$?


- A. 0
- B. 1
- C. 3
- D. 4

10. The figure shows the graph of y = f(x).

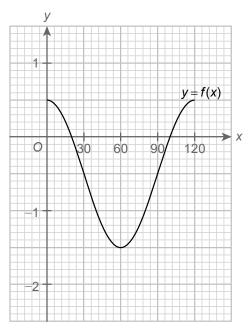
Which of the following equations has no real roots?


- A. f(x) = -1
- B. f(x) = 1
- $C. \quad \frac{1}{2}f(x) = -1$
- $D. \quad \frac{1}{2}f(x) = 1$
- 11. The figure shows the graph of $y = 2\log_2 3x$.

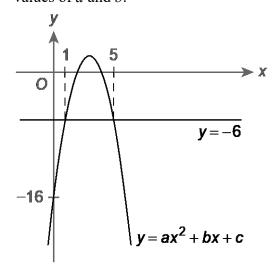

Which of the following lines can be drawn on the graph to help in solving the equation $log_2 6x = -1$?

- A. y = -8
- B. y = -4
- C. y = -2
- D. y = -1

12. The figure shows the graph of $y = 2^x + \log_2 x$ where x > 0. Solve the equation $2^x + \log_2 x - 3 = 10$ correct to 1 decimal place.

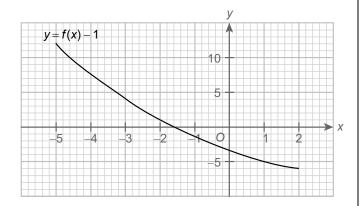


- A. x = 3.1
- B. x = 3.2
- C. x = 3.3
- D. x = 3.5
- 13. The figure shows the graphs of y = f(x) and y = k, where $a \le x \le g$. The roots of the equation f(x) = k are



- A. *a*, *d*, *e*.
- B. b, c, f.
- C. b, c, f, g.
- D. a, b, c, d, e, f.

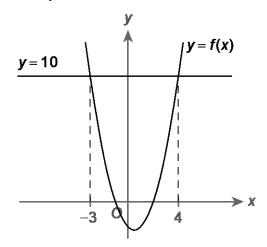
14. The figure shows the graph of y = f(x) where $0 \le x \le 120$. If the equation f(x) = k has only one real root, solve the equation f(x) = k+1 correct to the nearest 6.



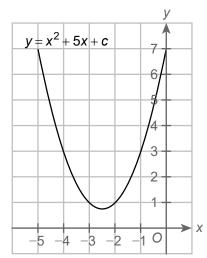
- A. No real roots
- B. x = 60
- C. x = 18 or 102
- D. x = 30 or 90
- 15. The figure shows the graphs of $y = ax^2 + bx + c$ and y = -6. Find the values of a and b.

- A. a = -4.4, b = 26.4
- B. a = -3.2, b = 19.2
- C. a = -2, b = 12
- D. a = -1, b = 6

16. The figure shows the graph of y = f(x) - 1 where $-5 \le x \le 2$.

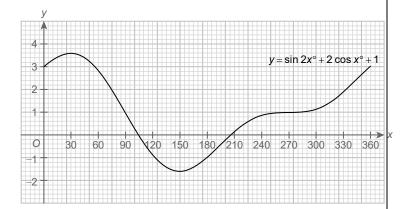

Which of the following is the solutions of the inequality f(x) > 5 in the interval $-5 \le x \le 2$?

- A. $-3.2 < x \le 2$ (corr. to the nearest 0.2)
- B. $-3.0 < x \le 2$ (corr. to the nearest 0.2)
- C. $-5 \le x < -3.0$ (corr. to the nearest 0.2)
- D. $-5 \le x < -3.2$ (corr. to the nearest 0.2)
- 17. The figure shows the graph of $y = \left(\frac{2}{3}\right)^x + k$. Solve the inequality $\left(\frac{3}{2}\right)^x + k \ge 0$.


- A. $x \le -1.7$ (corr. to 1 d.p.)
- B. $x \le 1.7$ (corr. to 1 d.p.)
- C. $x \ge -1.7$ (corr. to 1 d.p.)
- D. $x \ge 1.7$ (corr. to 1 d.p.)

18. The figure shows the graphs of y = f(x) and y = 10.

Which of the following inequalities has the solutions x < -3 or x > 4?

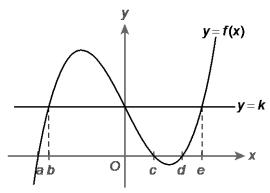

- A. f(x) > 10
- B. f(x) < 10
- C. f(x) > 0
- D. f(x) < 0
- 19. The figure shows the graph of $y = x^2 + 5x + c$ where $-5 \le x \le 0$.

Which of the following inequalities has the solutions $-5 \le x < -4$ or $-1 < x \le 0$ (corr. to the nearest integer)?

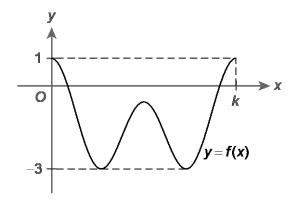
- A. $x^2 + 5x + c < 3$
- B. $x^2 + 5x + c \le 3$
- C. $x^2 + 5x + c > 3$
- D. $x^2 + 5x + c \ge 3$

20. The figure shows the graph of $y = \sin 2x^{\circ} + 2\cos x^{\circ} + 1$ where $0 \le x \le 360$.

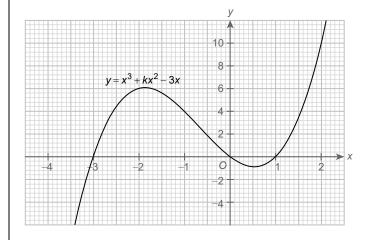
Which of the following inequalities has no solutions in the interval $0 \le x \le 360$?


A.
$$\sin 2x^{\circ} + 2\cos x^{\circ} \ge 3$$

B.
$$\sin 2x^{\circ} + 2\cos x^{\circ} \le 3$$


C.
$$\sin 2x^{\circ} + 2\cos x^{\circ} \ge -2$$

D.
$$\sin 2x^{\circ} + 2\cos x^{\circ} \le -2$$


21. The figure shows the graphs of y = f(x) and y = k. The solutions of f(x) < k are

- A. b < x < e.
- B. x < a or c < x < d.
- C. a < x < b or 0 < x < c or d < x < e.
- D. x < b or 0 < x < e.
- 22. The figure shows the graph of y = f(x) where $0 \le x \le k$. Find the range of values of m such that $f(x) m \ge 0$ has no solutions.

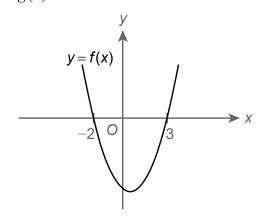
- A. m > 1
- B. $m \ge 1$
- C. m < -3
- D. $m \le -3$
- 23. The figure shows the graph of $y = x^3 + kx^2 3x$. Solve the inequality $x^3 + kx^2 3x \le -k$.

- A. $x \ge -3.2$ (corr. to 1 d.p.)
- B. $x \le -3.2$ (corr. to 1 d.p.)
- C. $-2.7 \le x \le -0.8$ or $x \ge 1.5$ (corr. to 1 d.p.)
- D. $x \le -2.7$ or $-0.8 \le x \le 1.5$ (corr. to 1 d.p.)

24. If the graph of $y = x^2 - 2x - 5$ is translated rightwards by 2 units and upwards by 5 units, find the function represented by the image.

A.
$$y = x^2 - 6x + 8$$

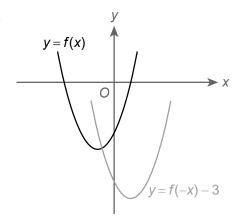
B.
$$y = x^2 - 6x - 2$$

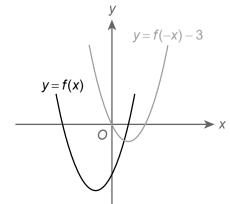

$$C. \quad y = x^2 + 2x$$

D.
$$y = x^2 + 2x - 10$$

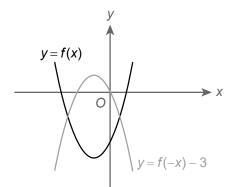
25. If the graph of $y = (x-2)^2 + 3$ is translated leftwards by 3 units and downwards by 1 unit, which of the following points must lie on the image?

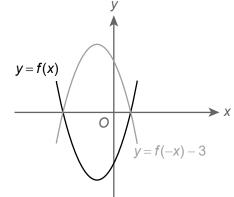
I.
$$(-1, 2)$$


26. If the graph of y = g(x) is obtained by translating the graph of y = f(x) rightwards by 4 units, the roots of g(x) = 0 are


A.
$$-6$$
 and -1 .

27. Which of the following may represent the graphs of y = f(x) and y = f(-x) - 3 on the same rectangular coordinate system?


A.


B.

C.

D.

28. If (2, 3) is a point lying on the graph of y = f(x), which of the following equations must have real root(s)?

A.
$$f(x-2)-2=0$$

B.
$$f(x-2)+3=0$$

C.
$$f(x-3) + 2 = 0$$

D.
$$f(x+3)-3=0$$

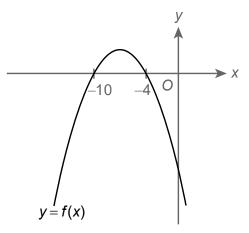
- **29.** Which of the following transformations may the graph of y = 2x 1 undergo to obtain an image the same as the graph itself?
 - I. Translating rightwards by 2 units and upwards by 2 units
 - II. Translating leftwards by 1 unit and downwards by 2 units
 - III. Translating leftwards by 2 units and downwards by 1 unit
 - A. I only
 - B. II only
 - C. III only
 - D. II and III only
- 30. If the graph of $y = (2x+4)^2 8$ is enlarged to 2 times the original along the x-axis and then translated downwards by 2 units, find the function represented by the image.

A.
$$y = (x+4)^2 - 10$$

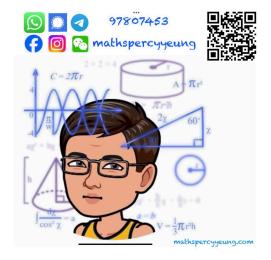
B.
$$y = 16(x+1)^2 - 10$$

C.
$$y = 8(x+2)^2 - 18$$

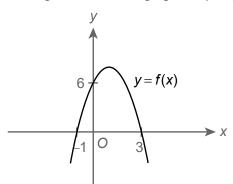
D.
$$y = 2(x+2)^2 - 6$$


31. The graph $C_1: y = f(x)$ undergoes a transformation to obtain the image $C_2: y = 3f(-x) + 8$. If A(-3, -5) is a point on C_1 , find the coordinates of the image of A.

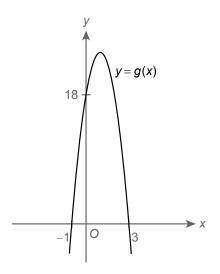
A.
$$(-3, 23)$$


B.
$$(3, -23)$$

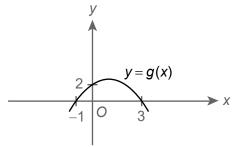
C.
$$(3, -7)$$


- D. (9, 3)
- 32. The figure shows the graph of y = f(x). Find the x-intercepts of the graph of y = f(-2x).

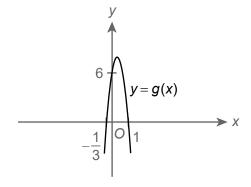
- A. 8 and 20
- B. 2 and 5
- C. -5 and -2
- D. -20 and -8

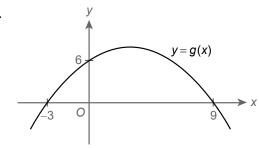


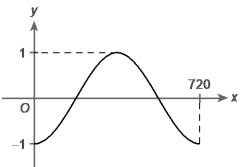
33. The figure shows the graph of y = f(x).



If f(x) = 3g(x), which of the following may represent the graph of y = g(x)?


A.


В.


C.

D.

34. The figure shows the graph of the function

A.
$$y = \cos\left(\frac{-x}{2}\right)^{\circ}$$
.

B.
$$y = \cos(-2x)^{\circ}$$
.

C.
$$y = -\cos \frac{x^{\circ}}{2}$$
.

D.
$$y = -\cos 2x^{\circ}$$
.

