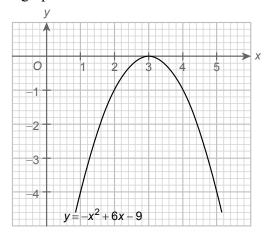
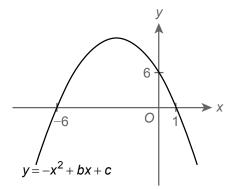

F.4 Mathematics

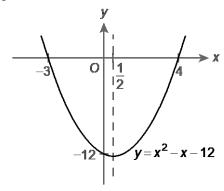

MC Exercise

4A4 Graphs of Quadratic Functions and their Applications

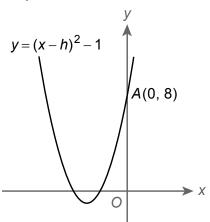
1. The figure shows the graph of $y = x^2 - 4x + 2$. Find the x-intercept(s) of the graph.



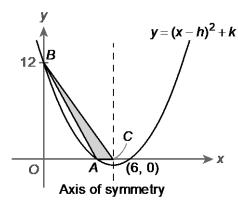
- A. -2
- B. 2
- C. -2 and 2
- D. 0.6 and 3.4 (corr. to 1 d.p.)
- 2. The figure shows the graph of $y = -x^2 + 6x 9$. Find the axis of symmetry of the graph.


- A. x = 0
- B. y = 0
- C. x = 3
- D. y = 3

3. The figure shows the graph of $y = -x^2 + bx + c$.

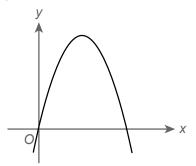

Which of the following is a root of the quadratic equation $-x^2 + bx + c = 0$?

- A. -1
- B. 0
- C. 1
- D. 6
- 4. The figure shows the graph of $y = x^2 x 12$ and its axis of symmetry. Solve the equation x(x+1) = 2(x+6) by the graphical method.

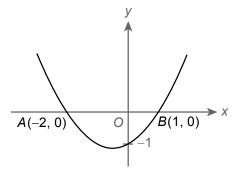


- A. $x = \frac{1}{2}$
- B. x = 0
- C. x = -12
- D. x = -3 or x = 4

5. In the figure, the graph of $y = (x - h)^2 - 1$ cuts the y-axis at A(0, 8). Find the axis of symmetry.

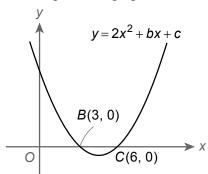


- A. x = -2
- B. $x = -2\sqrt{2}$
- C. x = -3
- D. x = -4
- 6. In the figure, the graph of $y = (x h)^2 + k$ cuts the x-axis at A and (6, 0), and the y-axis at B. C is the intersection of the axis of symmetry and the x-axis. If the area of $\triangle ABC$ is 12 square units, find the coordinates of the vertex.

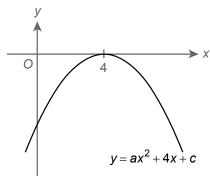


- A. (3, -9)
- B. (4, -4)
- C. (4, -12)
- D. (5,-1)

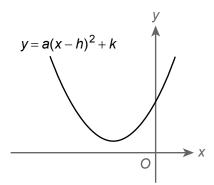
- 7. Which of the following statements about the graph of $y = 2(x-2)^2 + 9$ is true?
 - A. The *x*-intercepts of the graph are -2 and 9.
 - B. The *y*-intercept of the graph is 9.
 - C. The axis of symmetry is x = 2.
 - D. The coordinates of the vertex are (9, 2).
- 8. The figure shows the graph of a quadratic function passing through the origin. If the coordinates of the vertex of the graph are (2, 8), find the function.


- A. $y = -(x-2)^2 + 8$
- B. $y = -2(x+2)^2 + 8$
- C. $y = -2(x-2)^2 + 8$
- D. $y = -(x-2)^2 8$
- 9. In the figure, the quadratic graph cuts the x-axis at A(-2, 0) and B(1, 0), and the y-intercept is -1.

Which of the following is the equation of the graph?

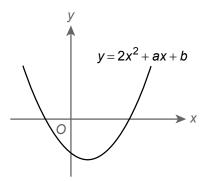

- A. y = 2(x+2)(x-1)
- B. $y = \frac{1}{2}(x+2)(x-1)$
- C. y = 2(x-2)(x+1)
- D. $y = \frac{1}{2}(x-2)(x+1)$

10. In the figure, the graph of $y = 2x^2 + bx + c$ cuts the x-axis at B(3, 0) and C(6, 0). Find the y-intercept of the graph.

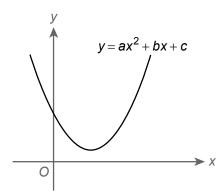


- A. 18
- B. 36
- C. 54
- D. 72
- 11. If the vertex of the graph of $y = 3x^2 + kx + 48$ lies on the x-axis and k is a constant, find the value(s) of k.
 - A. 24
 - B. 24 or -24
 - C. 12
 - D. 12 or -12
- 12. If $2x^2 4x + 3k > 0$ for any real number x, where k is a constant, find the range of values of k.
 - A. $k < \frac{3}{2}$
 - B. $k < \frac{2}{3}$
 - C. $k > \frac{3}{2}$
 - D. $k > \frac{2}{3}$

13. In the figure, the graph of $y = ax^2 + 4x + c$ touches the x-axis. Find the y-intercept of the graph.


- A. $-\frac{1}{2}$
- B. -4
- C. -8
- D. -16
- **14.** The figure shows the graph of $y = a(x-h)^2 + k$.

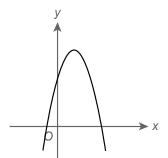
Which of the following are true?


- I. k > 0
- II. The coordinates of the vertex are (-h, k).
- III. $\frac{a}{h} < 0$
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

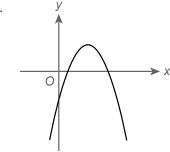
15. The figure shows the graph of $y = 2x^2 + ax + b$.

Which of the following is true?

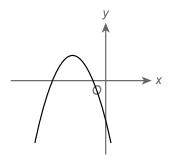
- A. a < 0 and b < 0
- B. a < 0 and b > 0
- C. a > 0 and b < 0
- D. a > 0 and b > 0
- **16.** The figure shows the graph of $y = ax^2 + bx + c$.

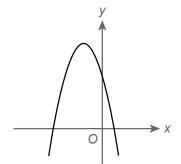


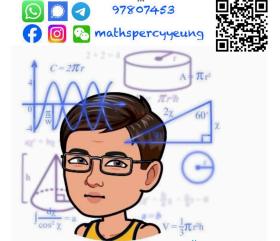
Which of the following is/are true?


- I. a > 0
- II. b > 0
- III. $b^2 4ac > 0$
- A. I only
- B. II only
- C. I and II only
- D. I and III only

17. Which of the following may represent the graph of $y = ax^2 + bx + c$ where a < 0, b < 0 and c > 0?


A.

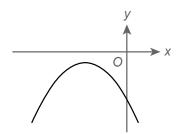

B.



C.

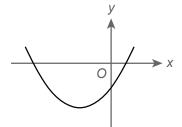


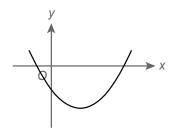
D.



18. The figure shows the graph of $y = ax^2 + bx + c$.

Which of the following may represent the graph of $y = cx^2 + ax + b$?

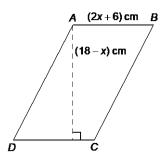

A.


В.

C.

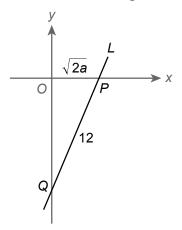
D.

- 19. If the minimum value of $y = x^2 2x + k + 2$ is -4, where k is a constant, then k = 1
 - A. -5.
 - В. -6.
 - C. -7.
 - D. -8.

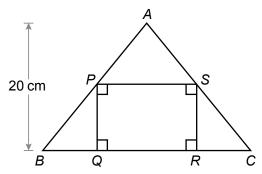

20. Which of the following have the same minimum value?

I.
$$y = (3-x)^2 - 10$$

II.
$$y = x^2 + 4x - 6$$

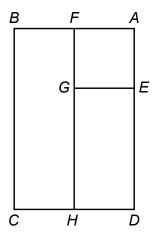

III.
$$y = 4x^2 + 4x + 11$$

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- **21.** The figure shows a parallelogram *ABCD*. Find the maximum area of *ABCD*.



- A. 216 cm²
- B. 220.5 cm²
- C. 229.5 cm²
- D. 441 cm²
- **22.** The difference between two numbers is 8. Which of the following is a possible value of the sum of the squares of these two numbers?
 - A. 40
 - B. 30
 - C. 20
 - D. 10

23. In the figure, the straight line L cuts the x-axis and the y-axis at P and Q respectively. If PQ = 12 and $OP = \sqrt{2a}$, find the maximum area of ΔOPQ .



- A. 18 square units
- B. 36 square units
- C. 72 square units
- D. 144 square units
- 24. The figure shows an isosceles triangle ABC with AB = AC. It is given that the area of $\triangle ABC$ is 400 cm^2 and its height is 20 cm. PQRS is a rectangle with vertices P, Q, R and S lying on the sides of $\triangle ABC$. Find the maximum area of rectangle PQRS.

- A. 100 cm²
- B. 150 cm^2
- C. 200 cm²
- D. 250 cm²

25. In the figure, ABCD is a rectangular frame formed by wooden sticks. A wooden stick FH is placed in the middle of AB and CD, and a wooden stick EG is placed on AD and FH such that AEGF is a square. It is known that the total length of the wooden sticks is 270 cm. Find the maximum area of ABCD.

- A. $2\,430\,\text{cm}^2$
- B. $3\,030\,\text{cm}^2$
- C. $4\,075\,\mathrm{cm}^2$
- D. 6 075 cm²

