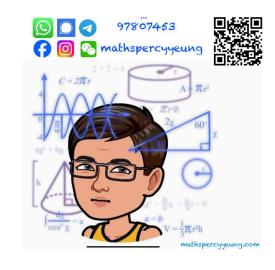
2019 - 2020 2nd Term Examination


Form 5 MATHEMATICS **Extended Part** Module 2 (Algebra and Calculus)

Question-Answer Book

6th July, 2020. (Monday) 8:15 am - 10:45 am (2.5 hours) This paper must be answered in English.

INSTRUCTIONS

- 1. After the announcement of the start of the examination, you should first write your name, class and class number in the spaces provided on this cover.
- 2. This paper consists of Section A and Section B.
- 3. Answer ALL questions. Write your answers in the spaces provided in this Question-Answer Book.
- Graph paper and supplementary answer sheets will be 4. supplied on request. Write your name, class, class number and mark the question number box on each sheet.
- Unless otherwise specified, all working must be clearly 5. shown.
- Unless otherwise specified, numerical answers must be 6. exact.
- The diagrams in this paper are not necessarily drawn to 7. scale.

	Marks
Section A	/ 50
Section B	/ 50
Grand Total	%

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$2 \sin A \cos B = \sin (A + B) + \sin (A - B)$$

$$2\cos A\cos B = \cos (A+B) + \cos (A-B)$$

$$2 \sin A \sin B = \cos (A - B) - \cos (A + B)$$

$$\sin A + \sin B = 2\sin \frac{A+B}{2}\cos \frac{A-B}{2}$$

$$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

Section A (50 marks)

Find $\frac{d}{dx}(x\sin x)$ from first principles.

(4 marks)

Answers written in the margins will not be marked

	ed.	
	will not be marked.	
-	ins will no	
	ad	
	Answers written in the mar	
•	Answers '	

4.	(a)	If	$\tan A = \frac{2 - \tan B}{1 - 2\tan B}$, prove that	$\sin\left(A+B\right)=2\cos\left(A-B\right).$	
					,	

(b)	Using (a), solve the equation	$\tan(x+50^\circ) = \frac{2-\tan(x-10^\circ)}{1-2\tan(x-10^\circ)}$, where	$0^{\circ} \le x \le 90^{\circ} .$
-----	-------------------------------	---	------------------------------------

(6 marks)

		•

	arke	
-	ot be m	
:	71 II D	
	e margins v	0
-	then	
	in in	
	s writte	
	Answers	

5.			we that $\sin^2 x \cos^2 x = \frac{1 - \cos 4x}{8}$.	
	(b)		$f(x) = \sin^4 x + \cos^4 x$	
		(i)	Express $f(x)$ in the form $A \cos Bx + C$, where A , B and C are constants.	
		(ii)	Solve the equation $8 f(x) = 7$, where $0 \le x \le \frac{\pi}{2}$.	
				(7 marks)

$\sum_{r=1}^{n} r(r+1)^2 = \frac{n(n+1)(n+2)(3n+5)}{12}$ for all positive integers n . (b) Hence, evaluate $50 \times 5.1^2 + 51 \times 5.2^2 + 52 \times 5.3^2 + \cdots + 100 \times 10.1^2$.	
(b) Helice, evaluate 30 × 3.1 × 31 × 3.2 × 3.3 × 100 × 10.1 .	(8 m

(a) Using mathematical induction, prove that

ırked.	rked
ot be ma	ot be ma
n IIIw st	n lliw sc
Answers written in the margins will not be marked.	Answers written in the margins will not be marked
ten in th	ten in th
vers writ	vers writ
Ansv	Anex

- (a) Let M be a 3×3 matrix such that $M^2 = M^T$, where M^T is the transpose of M.
 - (i) Prove that |M| = 0 or 1.
 - (ii) Suppose M is a non-singular matrix. Prove that $M^4 = M$ and $M^{-1} = M^T$.
 - $-\frac{\sqrt{3}}{2}$. Using (a), or otherwise, find A^{-1} .

(7 marks)

_	_
-	marke
	c
	בים
Ξ	_
•	3
	margins
	the m
	_
	Written
	Answers
	-
1	Ц

Nou.	٠. ٢٠٠
margins win	II.
Ausweis withen in the margins will not be marked.	Anouse of to Him marine of the motion was
W CID WCIR	

Answers written in the margins will not be marked.

(a) In Figure 1, the shaded region is bounded by the curve $y = \frac{x^2}{4} - 1$, the positive x-axis, the positive y-axis and the line y = h, where h > 0. Show that the volume of the solid generated by revolving the shaded region about the y-axis is $2\pi h (h+2)$.

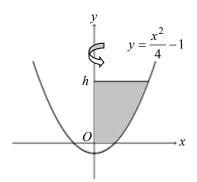
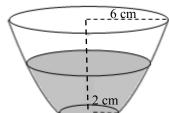



Figure 1

(b) In Figure 2, the bowl is formed by revolving the shaded region about the y-axis as described in (a). The radii of the bottom and the top of the bowl are 2 cm 6 cm respectively.

(i) Find the height of the bowl.

(8 marks)

(ii) If water is poured into the empty bowl at the rate of $\pi\left(1+\frac{t}{4}\right)$ cm³/s, where ts is the time used for pouring the water into the bowl, when will the water level be half of the height of the bowl?

Figure 2

j.	1
marginis win	-
Answers written in the margins will not be marked.	A contract of to a Him pairwood of as an experience parameter
TO WOLL I	

Section B (50 marks)

- Define $f(x) = \frac{3x^2 2x 5}{x 2}$ for all $x \ne 2$. Denote the graph of y = f(x) by G.
 - (a) Find the asymptote(s) of G.

(3 marks)

(b) Find f'(x).

(2 marks)

(c) Find the maximum point(s) and the minimum point(s) of G.

(4 marks)

(d) Find the area of the region bounded by G and the x-axis.

(4 marks)

	٨.
	٢
	m
	2
;	_
	_
	-
	: 3
	137
	110
	b
	mar
	4
	<u>.</u>
7	÷
•	+
•	
•	
•	
•	
•	2
•	נונ
•	11
•	נונ
	vritten in
•	vritten in
	written in
	written in
	c written in
	c written in
	c written in
	c written in
	c written in
	c written in
	c written in
	c written in
	c written in
	c written in
	c written in
	c written in
	c written in
	c written in
	c written in
	c written in
	c written in

j.	1
marginis win	-
Answers written in the margins will not be marked.	A contract of to a Him pairwood of as an experience parameter
TO WOLL I	

j.	1
marginis win	-
Answers written in the margins will not be marked.	A contract of to a Him pairwood of as an experience parameter
TO WOLL I	

j.	1
marginis win	-
Answers written in the margins will not be marked.	A contract of to a Him pairwood of as an experience parameter
TO WOLL I	

10. (a) Find $\frac{d}{dx} \ln \frac{2+x}{2-x}$.

(1 mark)

(b) Let $0 \le x \le \frac{\pi}{4}$. Prove that $\frac{1}{3 + 5\cos 2x} = \frac{\sec^2 x}{10 - 2\sec^2 x}$.

(1 mark)

(c) Evaluate $\int_0^{\frac{\pi}{4}} \frac{1}{3 + 5\cos 2x} dx$.

(3 marks)

(d) Let f(x) be a continuous function defined on **R** such that f(-x) = -f(x) for all $x \in \mathbf{R}$. Prove that $\int_{-a}^{a} f(x) \ln(1 + e^{x}) dx = \int_{0}^{a} x f(x) dx$ for any $a \in \mathbf{R}$.

(4 marks)

(e) Evaluate $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\sin 2x}{(3+5\cos 2x)^2} \ln (1+e^x) dx$.

(4 marks)

,		c	j
	1	d)
,			4
	-		3
	1	Ċ	Ĭ
		١	
	1	1	2
,		C	_
	+		2
			2
		۲	
;	_	_	
•			>
	i		>
	Ì	ú	0
	. !		1
		b	ı
			4
		Ì	
	1	1	٥
,	7	C	
	*		
		Ç	
		_	
		ì	3
	+	ř	
			Ξ
		Ì	>
	i		>
	1	į	2
	i	i	3
	-		>
	i	ć	'n
		¢	2
	<		C

j.	1
marginis win	-
Answers written in the margins will not be marked.	A contract of to a Him pairwood of as an experience parameter
TO WOLL I	

j.	1
marginis win	-
Answers written in the margins will not be marked.	A contract of to a Him pairwood of as an experience parameter
TO WOLL I	

11. (a) Solve the equation

$$\begin{vmatrix} 3-\lambda & 4 \\ 1 & -\lambda \end{vmatrix} = 0 \qquad \dots (*).$$

(2 marks)

(b) Let λ_1 and λ_2 $(\lambda_1 > \lambda_2)$ be the roots of (*). Let $P = \begin{pmatrix} 1 & 1 \\ a & b \end{pmatrix}$. It is given that

$$\begin{pmatrix} 3 & 4 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ a & b \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_1 a & \lambda_2 b \end{pmatrix} ,$$

where a and b are constants.

- (i) Find P.
- (ii) Evaluate $P^{-1}\begin{pmatrix} 3 & 4 \\ 1 & 0 \end{pmatrix} P$.
- (iii) Using (b)(ii), evaluate $\begin{pmatrix} 3 & 4 \\ 1 & 0 \end{pmatrix}^{10}$.

(8 marks)

(c) A sequence is defined by

$$x_1 = 1$$
, $x_2 = 1$ and $x_n = 3x_{n-1} + 4x_{n-2}$ for $n = 3, 4, 5, \dots$

It is known that this sequence can be expressed in the matrix form

$$\begin{pmatrix} x_n \\ x_{n-1} \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_{n-1} \\ x_{n-2} \end{pmatrix}$$

Using the result of **(b)(iii)**, find x_{12} .

(2 marks)

j.	1
marginis win	-
Answers written in the margins will not be marked.	A contract of to a Him pairwood of as an experience parameter
TO WOLL I	

12. Consider the system of linear equations in real variables x, y, z

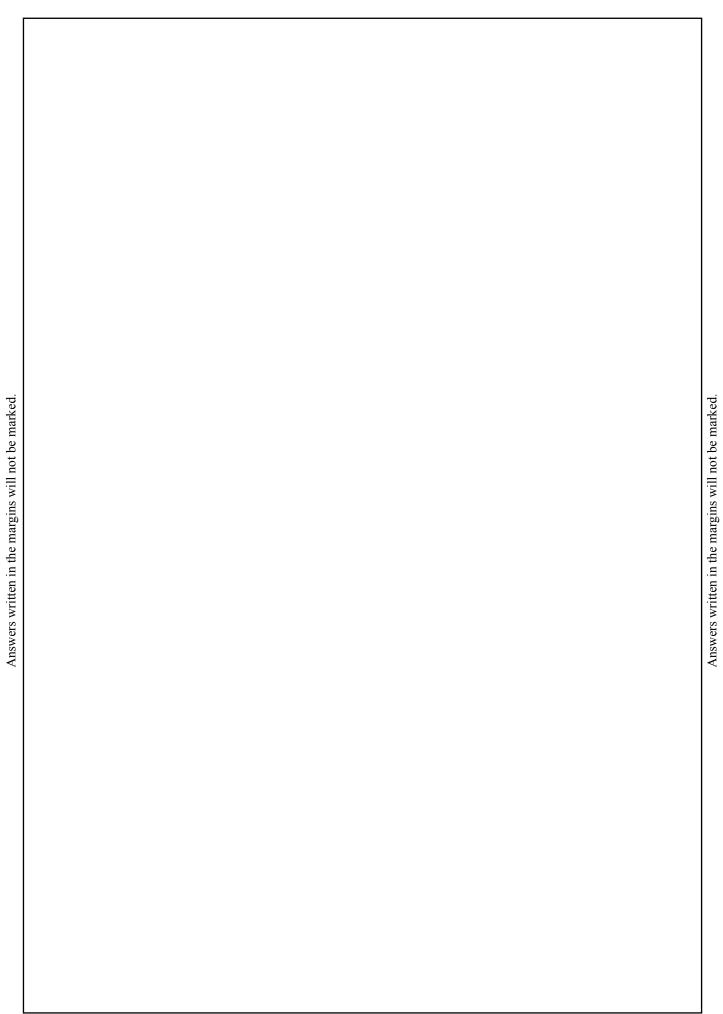
(E):
$$\begin{cases} x + y - z = a \\ x - y - (\lambda - 1)z = b \\ \lambda x + 3y - 2z = 4a \end{cases}$$

where λ , a and b are real numbers.

- (a) Assume that (E) has a unique solution.
 - (i) Find the range of values of λ .
 - (ii) Express z in terms of λ , a and b.

(5 marks)

- **(b)** Assume that $\lambda = 1$ and (E) is consistent.
 - (i) Express b in terms of a.
 - (ii) Hence, solve (E) in terms of a.


(4 marks)

(c) If (x, y, z) is a real solution of the system of linear equations

$$\begin{cases} x + y - z = 6 \\ x - y = -12, \\ x + 3y - 2z = 24 \end{cases}$$

is $x^2 + y^2 + z^2 > 75$ always true? Explain your answer.

(3 marks)

