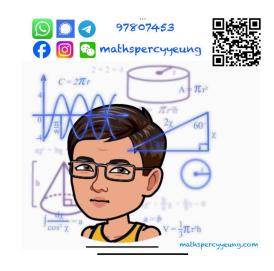
2018 - 2019 Form 5 Second Term Uniform Test


MATHEMATICS Extended Part Module 2 (Algebra and Calculus)

Question-Answer Book

28th March, 2019. (Thursday) 9:30 am – 10:30 am (1 hour) This paper must be answered in English.

INSTRUCTIONS

- 1. After the announcement of the start of the examination, you should first write your name, class and class number in the spaces provided on this cover.
- 2. This paper consists of Section A and Section B.
- 3. Answer ALL questions. Write your answers in the spaces provided in this Question-Answer Book.
- 4. Graph paper and supplementary answer sheets will be supplied on request. Write your name, class, class number and mark the question number box on each sheet.
- 5. Unless otherwise specified, all working must be clearly shown.
- 6. Unless otherwise specified, numerical answers must be exact.
- 7. In this paper, vectors may be represented by bold-type letters such as \mathbf{u} , but candidates are expected to use appropriate symbols such as $\vec{\mathbf{u}}$ in their working.
- 8. The diagrams in this paper are not necessarily drawn to scale.

Section	Marks
A	/ 27
В	/ 13
TOTAL	/40

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$2 \sin A \cos B = \sin (A + B) + \sin (A - B)$$

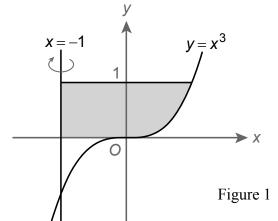
$$2\cos A\cos B = \cos (A+B) + \cos (A-B)$$

$$2 \sin A \sin B = \cos (A - B) - \cos (A + B)$$

$$\sin A + \sin B = 2\sin \frac{A+B}{2}\cos \frac{A-B}{2}$$

$$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$


$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

Answers written in the margins will not be marked.

Section A (27 marks)

1. In Figure 1, the shaded region is bounded by the curve $y = x^3$, the x-axis, the lines y = 1 and x = -1. A solid is generated by revolving the region about the line x = -1. Find the volume of the solid of revolution. (4 marks)

x + ky - z = 1 (a) Show that the system (E) has a unique solution for all values of k.		
(b) Solve the system (E) by Cramer's rule in terms of k .		
(5 marks)		

3.	Find (a) (b)	$\int \sin^3 x \cos x dx .$ $\int x^2 e^x dx .$	
			(5 marks)

	2x + (u-1)y - z = 0	
1.	Consider the homogeneous linear system (*) $\begin{cases} 2x + (a-1)y - z = 0 \\ ax + 3y - 4z = 0 \\ -2x + 2y + z = 0 \end{cases}$, where a	is a real number.
	(a) Find the values of a such that (*) has non-trivial solutions.	
	(b) According to the values of a obtained in (a), solve (*).	(7 marks)
		(7 marks)

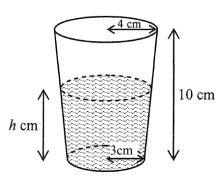


Figure 3

Answers written in the margins will not be marked.

(6 marks)

A frustum of height H is made by cutting off a right circular cone of base radius r from a right circular cone of base radius R (see Figure 2). It is given that the volume of the frustum is $\frac{\pi}{3}H\left(r^2+rR+R^2\right)$.

An empty glass is in the form of an inverted frustum described above with height 10 cm, the radii of the rim and the base 4 cm and 3 cm respectively. Water is being poured into the glass. Let $h \text{ cm} (0 \le h \le 10)$ be the depth of the water inside the glass at time t s (see Figure 3).

(a) Show that the volume $V \text{ cm}^3$ of water inside the glass at time t s is given by

$$V = \frac{\pi}{300} \left(h^3 + 90h^2 + 2700h \right) .$$

(b) If the volume of water in the glass is increasing at the rate 7π cm³s⁻¹, find the rate of increase of depth of water at the instant when h = 5.

е тагкеа.	e marked.
will not be	will not be
e margins	e margins
written in the margins will not be marked.	ritten in th
Answers w	Answers written in the margins will not be marked.
7	

Section B (13 marks)

(a) Solve the equation

$$\begin{vmatrix} 1-x & 4 \\ 2 & 3-x \end{vmatrix} = 0 \qquad \dots (*).$$

(2 marks)

(b) Let x_1 , x_2 ($x_1 < x_2$) be the roots of (*). Let $P = \begin{pmatrix} a & c \\ b & 1 \end{pmatrix}$. It is given that

$$\begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = x_1 \begin{pmatrix} a \\ b \end{pmatrix} , \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} c \\ 1 \end{pmatrix} = x_2 \begin{pmatrix} c \\ 1 \end{pmatrix} \text{ and } |P| = 1,$$

where a, b and c are constants.

- Find P.
- (ii) Evaluate $P^{-1}\begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} P$.
- (iii) Using (b)(ii), evaluate $\begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}^{12}$.

(11 marks)

Answers written in the margins will not be marked.

	be marked.
•	n01
-	=
-	M
	margins w
-	the
	II
	written
•	Answers

voa.	sed.
ıllalı	e marl
ווטנו טיוו	not be
S WIII	s will
WITHCH III HIC HIAIGHIS WIII HOL DE HIAINCH.	Answers written in the margins will not be marked.
1115 11	the n
	ten in
۾	rs writ
NSIIN CI	nswei
ζ .	V