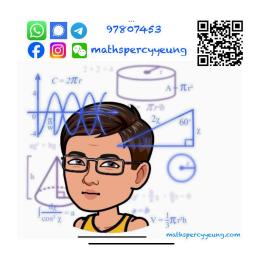


Form 5 1st Term Uniform Test


MATHEMATICS Extended Part Module 2 (Algebra and Calculus)

Question-Answer Book

9th November, 2018. (Friday) 9:30 am – 10:30 am (1 hour) This paper must be answered in English.

INSTRUCTIONS

- 1. After the announcement of the start of the examination, you should first write your name, class and class number in the spaces provided on this cover.
- 2. This paper consists of Section A and Section B.
- 3. Answer ALL questions. Write your answers in the spaces provided in this Question-Answer Book.
- 4. Graph paper and supplementary answer sheets will be supplied on request. Write your name, class, class number and mark the question number box on each sheet.
- 5. Unless otherwise specified, all working must be clearly shown.
- 6. Unless otherwise specified, numerical answers must be exact.
- 7. The diagrams in this paper are not necessarily drawn to scale.

Section A Question No.	Marks
1	
2	
3	
4	
5	
6	
7	
Section A Total	/ 36

Section B Question No.8	Marks
Section B Total	/ 12

	1
Grand Total	/ 48

FORMULAS FOR REFERENCE

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$cos(A \pm B) = cos A cos B \mp sin A sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$2 \sin A \cos B = \sin (A + B) + \sin (A - B)$$

$$2\cos A\cos B = \cos (A+B) + \cos (A-B)$$

$$2 \sin A \sin B = \cos (A - B) - \cos (A + B)$$

$$\sin A + \sin B = 2\sin \frac{A+B}{2}\cos \frac{A-B}{2}$$

$$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

Section A (36 marks)

- 1. In the expansion of $(1-4x)^2(1+x)^n$, the coefficient of x is 1.
 - (a) Find the value of n.
 - (b) Find the coefficient of x^2 .

(4 marks)

(a) Find $\int \frac{1}{\sqrt{36+x}} dx$. (b) Find $\int \frac{1}{36+x^2} dx$.	
(b) Find $\int \frac{1}{36 + x^2} dx$.	
	(5 marks)

•	ಧ
-	ž
	na
	ē
	tb
	no
	_
•	Ξ
•	⋛
	ns
•	Ξ,
	덛
	ਛ
	Ë
	O
-	3
	П
	e
	₽
•	Ξ
	≶
	S
	ĕ
	ӄ
	ß
	9
•	⋖
	7

•	3(2n+5)
	Prove, by mathematical induction, that $T_1 \cdot T_2 \cdot T_3 \cdot \cdots \cdot T_n = \frac{3(2n+5)}{5(2n+3)}$ for all positive integers n
	(6 marks

-	ed.
	mar
	e
	not
÷	
÷	_
•	W.
	argins
	ma
-	ţ
	Ξ
	written
•	Answers

, .	curve $y = f(x)$ satisfies $f''(x) = \cos 6x \sin 2x$. It is known that $f'\left(\frac{\pi}{2}\right) = \frac{1}{16}$ and $f\left(\frac{\pi}{2}\right)$	T /
(a)	•	
(b)		(7 morks)
		(7 marks)

6. Figure 1 shows a circle with centre *O* and radius 5 cm. *P* is a movable point on the circumference of the circle and *PQ* is a rod of length 5 cm. As *P* moves around the circle in the anti-clockwise direction, *Q* slides along a horizontal rail passing through *O*.

Let $\angle POQ = \theta$ and $0 < \theta < \pi$.

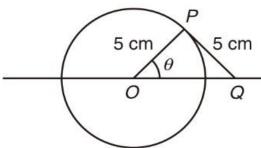


Figure 1

- (a) Express OQ in terms of θ .
- (b) If θ increases at a constant rate of $\frac{2}{5}$ rad/s, find the rate of change of OQ when $\theta = \frac{\pi}{2}$.

(5 marks)

-	
T	

•	Ž
	7
	٦r
	H
	_
	ď
-	`
	5
	1
÷	_
•	3
	2
	۲
•	Ξ
	5
	maronn
	marging
	ď.
7	7
	1
•	
	6
	Ĕ
•	I
	3
	v
	Pro
	Š
	V DSW
	٤
•	Ч

Section B (12 marks)	
8. (a) (i) Find $\frac{d}{d\theta}(\sec\theta + \tan\theta)$.	
(ii) Hence, show that $\int \sec \theta \ d\theta = \ln \sec \theta + \tan \theta + C$.	
(b) Hence, find the following indefinite integrals:	(3 marks)
(i) $\int \sec^3 x dx$ [Hint: use integration by parts]	
(i) $\int \sec^3 x dx$ (ii) $\int \sec^5 x dx$ (iii) $\int \sqrt{1+x^2} dx$ [Hint: use integration by parts]	
(iii) $\int \sqrt{1+x^2} \ dx$	
	(9 marks)
	70
	A new one written in the marries will not be marked
-	