

Form 5 2018 - 2019 1st Term Examination

MATHEMATICS **Extended Part** Module 2 (Algebra and Calculus)

Question-Answer Book

8th January, 2019. (Tuesday)

10:15 am - 12:15 pm (2 hours)

This paper must be answered in English.

INSTRUCTIONS

- After the announcement of the start of the examination, you should first write your name, class and class number in the spaces provided on this cover.
- 2. This paper consists of Section A and Section B.
- 3. Answer ALL questions. Write your answers in the spaces provided in this Question-Answer Book.
- 4. Graph paper and supplementary answer sheets will be supplied on request. Write your name, class, class number and mark the question number box on each sheet.
- Unless otherwise specified, all working must be clearly shown.
- Unless otherwise specified, numerical answers must be exact.
- 7. The diagrams in this paper are not necessarily drawn to scale.

Section A Question No.	Marks
Section A Total	/ 40

Section B Question No.	Marks
9	
10	
11	
Section B Total	/ 40

Grand Total	/ 80

FORMULAS FOR REFERENCE

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$cos(A \pm B) = cos A cos B \mp sin A sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$2 \sin A \cos B = \sin (A + B) + \sin (A - B)$$

$$2\cos A\cos B = \cos (A+B) + \cos (A-B)$$

$$2 \sin A \sin B = \cos (A - B) - \cos (A + B)$$

$$\sin A + \sin B = 2\sin \frac{A+B}{2}\cos \frac{A-B}{2}$$

$$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\cos A - \cos B = -2\sin \frac{A+B}{2}\sin \frac{A-B}{2}$$

Section A (40 marks)

1. Prove that $\frac{1}{\sqrt{x}} - \frac{1}{\sqrt{x+h}} = \frac{h}{(x+h)\sqrt{x} + x\sqrt{x+h}}$. Hence, find $\frac{d}{dx}\sqrt{\frac{3}{x}}$ from first principles.

(5 marks)

Answers written in the margins will not be marked.

Let $T_n = \frac{n-1}{2^n}$. By mathematical induction, prove that $T_1 + T_2 + T_3 + \dots + T_n = 0$ positive integers n .		marks)
r	(-	

3.	Find the limit.	
	(a) $\lim_{x\to 0} \frac{\sin 2x}{\tan 3x}$. (b) $\lim_{x\to 0} \frac{1-e^{-x}}{x}$	(5 marks)
4.	In the expansion of $(1-x)(a+bx)^8$, the coefficient of x^5 is zero. Find the value of	$\frac{a}{b}$.
		(5 marks)

5. 5.	It is given that $2x + \sqrt{x^2 + xy}$	dx	(4 marks)
•	Find the following integrals. (a) $\int (2x-3)^{2018} dx$	(b) $\int \cos^3 x \sin^5 x dx$	(5 marks)

7.	(a)	Show that	and β are two acute angles. $\frac{\sin \alpha + \sin \beta}{\cos \alpha + \cos \beta} = \tan(\frac{\alpha + \beta}{2}).$	
	(b)	If $3\sin\alpha$	$4\cos\alpha = 4\cos\beta - 3\sin\beta$, find the value of $\tan(\alpha + \beta)$.	(5 marks)

Answers written in the margins will not be marked.

(b)

Answers written in the margins will not be marked.

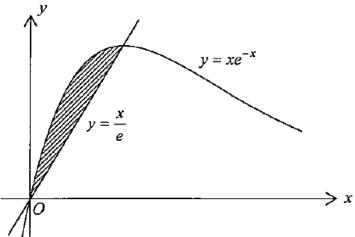


Figure 1

Figure 1 shows the shaded region bounded by the curve $y = xe^{-x}$ and the straight line $y = \frac{x}{e}$. Find the area of the shaded region. (6 marks)

Section B (40 marks)

In Figure 2, a straight line L touches a circle of centre O at the point P. AOB is a diameter of the circle and OA = 4 cm. D is a point on L such that AD is perpendicular to L. Let AD = x cm (0 < x < 8) and S cm² be the area of $\triangle ADP$.

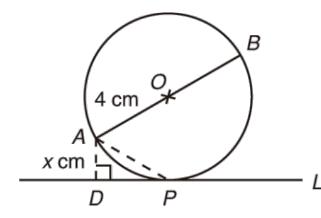


Figure 2

- (a) (i) Express DP in terms of x.
 - (ii) Express S in terms of x.

(3 marks)

(b) Find the maximum value of *S*.

(5 marks)

Answers written in the margins will not be marked.

(c) When AD = 2 cm, its length decreases at a rate of $\frac{1}{\sqrt{3}}$ cm/s. At that moment, find the rate of change of the area of $\triangle ADP$.

ll not be marked
ot be
will n
tten in the margins will
the
Щ.
۷Ti
Answers v

	ļ_,
Allsweis withou in the margins with not be marked.	Answers written in the margins will not be marked.
1 00 1	t be n
VIII III V	vill no
gills v	y snig
ıc maı	e mai
n III II	n in th
wille	writte
S W CLS	swers
ī	-Ans

10.	(a)	Let $f(x)$ be a continuous function defined on the interval $[0, a]$, where a	is a positive
		constant. Prove that $\int_0^a f(x)dx = \int_0^a f(a-x)dx$.	(3 marks)
	(b)	Prove that $\int_0^{\frac{\pi}{4}} \ln(1+\tan x) dx = \int_0^{\frac{\pi}{4}} \ln\left(\frac{2}{1+\tan x}\right) dx.$	(3 marks)
	(c)	Using (b), prove that $\int_0^{\frac{\pi}{4}} \ln(1 + \tan x) dx = \frac{\pi \ln 2}{8}.$	(3 marks)
	(d)	Using integration by parts, evaluate $\int_0^{\frac{\pi}{4}} \frac{x \sec^2 x}{1 + \tan x} dx$.	(3 marks)

Answers written in the margins will not be marked.

ed.	ed.
nark	nark
ı pe ı	t be
II no	ll no
IS WI	ıs wi
argır	argir
ne m	ne m
ı ın t	ı in t
ritter	ritter
ers w	STS W
Answers written in the margins will not be marked.	Answers written in the margins will not be marked.
A	A

- 11. Let $f(x) = \frac{2x}{1+x^2}$.
 - (a) (i) Find f'(x) and f''(x).
 - (ii) For the curve y = f(x), find all the extreme points and points of inflexion.

(8 marks)

(b) Find all the asymptote(s) of the curve y = f(x).

(1 mark)

(c) Sketch the curve y = f(x).

(2 marks)

- (d) Let R be the region bounded by the x-axis, the curve y = f(x) and the line x = a, where a is the x-coordinate of the maximum point of the curve y = f(x).
 - (i) Find the area of R.
 - (ii) If R is revolved about the x-axis, find the volume of the solid of revolution.

(6 marks)

Answers written in the margins will not be marked

	ed.
	mark
	ot be
	will r
	rgins
	e ma
	ı in th
	ritter
	ers w
	Answ
1	

arked.	arked.
oe m	be m
ou III	ill not
gins w	gins w
e mar	e mar
Answers written in the margins will not be marked.	Answers written in the margins will not be marked.
writte	writte
wers	wers
Ans	Ans