

Question-Answer Book

5th January, 2023 8:15 am – 9:30 am (1 hour 15 minutes) **This paper must be answered in English**

INSTRUCTIONS

- 1. Write your name, class and class number in the spaces provided on this cover.
- 2. This paper consists of TWO sections, A and B.
- 3. Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- 4. Unless otherwise specified, all working must be clearly shown.
- 5. Unless otherwise specified, numerical answers must be exact.
- 6. The diagrams in this paper are not necessarily drawn to scale.

Section	Marks
A Total	/34
B Total	/16
TOTAL	/50

FORMULAS FOR REFERENCE

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$2 \sin A \cos B = \sin (A + B) + \sin (A - B)$$

$$2 \cos A \cos B = \cos (A + B) + \cos (A - B)$$

$$2 \sin A \sin B = \cos (A - B) - \cos (A + B)$$

$$\sin A + \sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\sin A - \sin B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

Answers written in the margins will not be marked

Section A (34 marks)

- 1. (a) It is given that $\frac{1}{n(n+1)} = \frac{A}{n} + \frac{B}{n+1}$, where A and B are constants. Find the values of A and B.
 - **(b)** Hence, find the value of $\sum_{k=3}^{110} \frac{1}{k(k+1)}$.

(4 marks)

2.	 (a) Expand (3x-1)⁷ in ascending powers of x up to the term in x³. (b) Hence find the coefficient of x³ in the expansion of (x+2)(3x-1)⁷. 	
	(b) Thence find the coefficient of x in the expansion of $(x+2)(3x-1)$.	(4 marks)
3.	When $\left(3x^5 + \frac{1}{x^4}\right)^n$ is expanded in descending powers of x , the 6th term of the constant. (a) Find n .	ne expansion is a
	(b) Find the constant term of the expansion.	(4 marks)
	-	

Using mathematical induc	tion, prove that	$\frac{1\cdot 2^2}{2\cdot 2} + \frac{2}{3\cdot 2}$	$\frac{2 \cdot 2^3}{2 \cdot 4} + \frac{3}{3}$	$\frac{3\cdot 2^4}{4\cdot 5} + \cdots +$	$\frac{n \cdot 2^{n+1}}{(n+1)(n+2)}$	$=\frac{2^{n+2}}{1}$
		2.3	5.4	4.5	(n+1)(n+2)	
For all positive integers n .						(5 marks

5. Prove that	$\frac{\cos^2 A - \cos^2 B}{(\sin A - \sin B)^2}$	$= -\tan\left(\frac{A+B}{2}\right)\cot\left(\frac{A-B}{2}\right).$	(3 marks)

6.	(a) Prove the identity $\tan 2x = \frac{2\tan x}{2 - \sec^2 x}$. (b) Using (a), prove the identity $\cot y = \frac{8\cot 8y}{(2 - \sec^2 4y)(2 - \sec^2 2y)(2 - \sec^2 y)}$.	(5 marks)

7.	Evaluate each of the following. (a) $\lim_{x \to -2} \frac{x+2}{x+\sqrt{3x+10}}$ (b) $\lim_{x \to -2} \frac{\sqrt{2-4x+3x^2}}{x+\sqrt{3x^2}}$					
	(b) $\lim_{x \to +\infty} \frac{3+6x}{3+6x}$ 4x cot 2x					
	(c) $\lim_{x \to 0} \frac{4x \cot 2x}{\cos x}$					
		(9 marks)				

Sec 8.	etion B (16 marks) (a) Using mathematical induction, prove that $\sum_{r=1}^{n} r(r+4) = \frac{1}{6} n(n+1)(2n+13)$ for all positive
	integers n . (5 marks)
	(b) It is given that $1+2+3++n=\frac{n(n+1)}{2}$ for all positive integers n . Evaluate
	$1 \cdot 6 + 2 \cdot 7 + 3 \cdot 8 + \dots + 40 \cdot 45$. (3 marks)

	-
	-
	-
	-
	-
	_
	-
	-
	-
	-
	-
	_
	-
	-
	-
	-
	-
	_
	-
	-
	-
	-
	_
	-
	_
-	-
-	-
	_
	_
	_
	_
	_

9.	(a) Pr	rove that $1-\sin^4\theta-\cos^4\theta=\frac{1}{2}\sin^22\theta$.	(2 marks)
	(b) By	y (a), show that $\sin \frac{\pi}{8}$ is a root of $8x^4 - 8x^2 + 1 = 0$.	(3 marks)
	(c) He	ence, or otherwise, express $\sin \frac{\pi}{8}$ in surd form.	(3 marks)