


MATHEMATICS Extended Part Module 2 (Algebra and Calculus) Question–Answer Book

12th January, 2022 8:15 am – 9:30 am (1 hour 15 minutes) This paper must be answered in English

INSTRUCTIONS

- 1. Write your name, class and class number in the spaces provided on this cover.
- 2. This paper consists of TWO sections, A and B.
- 3. Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- 4. Unless otherwise specified, all working must be clearly shown.
- 5. Unless otherwise specified, numerical answers must be exact.
- 6. The diagrams in this paper are not necessarily drawn to scale.

Section	Marks
A Total	/33
B Total	/17
TOTAL	/50

FORMULAS FOR REFERENCE

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$2\sin A \cos B = \sin (A + B) + \sin (A - B)$$

$$2\cos A \cos B = \cos (A + B) + \cos (A - B)$$

$$2\sin A \sin B = \cos (A - B) - \cos (A + B)$$

$$\sin A + \sin B = 2\sin \frac{A+B}{2}\cos \frac{A-B}{2}$$

$$\sin A - \sin B = 2\cos \frac{A+B}{2}\sin \frac{A-B}{2}$$

$$\cos A + \cos B = 2\cos \frac{A+B}{2}\cos \frac{A-B}{2}$$

$$\cos A - \cos B = -2\sin \frac{A+B}{2}\sin \frac{A-B}{2}$$

Section A (33 marks)

2.	Prove that $\sin\left(\frac{3\pi}{2} - \theta\right) \sec\left(\frac{\pi}{2} + \theta\right) - \cos\left(\frac{3\pi}{2} + \theta\right) \csc\left(\frac{\pi}{2} - \theta\right) = 2 \cot 2\theta$.	(5 marks)

- 3. Let $\sum_{i=1}^{4} x_i^2 = 21$, $\sum_{i=1}^{5} x_i y_i = 12$ and $\sum_{i=1}^{5} y_i^2 = 11$.
 - (a) It is given that $x_5 = 2$. Find the value of $\sum_{i=1}^{5} x_i^2$.
 - **(b)** Find the value of $\sum_{i=1}^{5} (x_i 2y_i)^2$.

(4 marks)

4.	If the constant term in the expansion of $\left(kx + \frac{4}{x^2}\right)^9$ is 84, where k is a	a constant, find the
	values of k .	(3 marks)

(a) Find the val(b) Find the cor	e expansion o	$f\left(1+\frac{2}{x}-\frac{3}{x^2}\right)$	$(1+2x)^n.$	
			,	(5 m
-				
-				

for all positive integers n .		(5
_		
		_
		_

7.	Evaluate each of the following.	
	$\sqrt{\frac{2}{3} \cdot 12} = 7$	
	$\lim_{x \to 6} x - 6$	
	(b) $\lim_{x \to \infty} \frac{(3x+1)(x-6)(2x+7)}{(4x^2+5)(9x-8)}$	
	(b) $\lim_{x \to \infty} \frac{(3x+1)(x-6)(2x+7)}{(4x^2+5)(9x-8)}$	
	$a^{3x}-1$	
	$x \to 0 \sin 4x$	
		(8 marks)
		_
	-	

Section B (17 marks)

8. (a) Prove, by mathematical induction, that for all positive integers n,

$$\frac{1}{2\times 4} + \frac{1}{3\times 5} + \dots + \frac{1}{(n+1)(n+3)} = \frac{n(5n+13)}{12(n+2)(n+3)}.$$

(5 marks)

(b) Using (a), evaluate each of the following expressions.

(i)
$$\frac{1}{2\times4} + \frac{1}{3\times5} + \dots + \frac{1}{47\times49}$$

(ii)
$$\sum_{r=23}^{48} \left(\frac{50}{r+1} \times \frac{51}{r+3} \right)$$

(4 marks)

<u> </u>

(a) Show that $\frac{3\pi}{10}$ is a root of (*).	(2 marks
(b) Show that $\cos 3\theta = 4 \cos^3 \theta - 3 \cos \theta$.	(3 marks
(c) Find the value of $\sin \frac{3\pi}{10}$.	(3 marks
-	

	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
END OF PAPER	