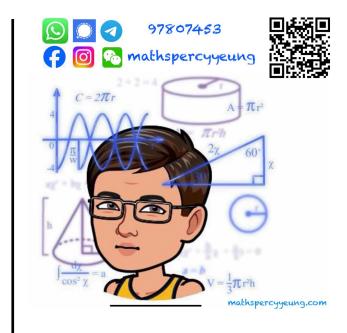

2022-2023-S4 1st TERM EXAM-MATH-EP(M1)



MATHEMATICS Extended Part Module 1 (Calculus and Statistics) Question–Answer Book

10th January, 2023 8:15 am – 9:30 am (1 hour 15 minutes) This paper must be answered in English

INSTRUCTIONS

- 1. Write your name, class and class number in the spaces provided on this cover.
- 2. This paper consists of TWO sections, A and B.
- 3. Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- 4. Unless otherwise specified, all working must be clearly shown.
- 5. Unless otherwise specified, numerical answers should be either exact or given to 4 decimal places.

Sections	Marks
A Total	/30
B Total	/20
TOTAL	/50

Fir	and the coefficient of x^{93} in the expansion of $\left(\frac{1}{x} - x\right)^{99}$.	(3 marks
Gi	ven a curve C: $y = \frac{x^3}{3} + \frac{x^2}{2} - 6x + 3$.	
(a)	Find the slope of the tangent to the curve C at the point $P(3, -\frac{3}{2})$.	
(a) (b)	Q is another point on the curve C . If the slopes of the tangents to the curve	at P and Q a
. ,	2	
. ,	Q is another point on the curve C . If the slopes of the tangents to the curve	
. ,	Q is another point on the curve C . If the slopes of the tangents to the curve	
. ,	Q is another point on the curve C . If the slopes of the tangents to the curve	
. ,	Q is another point on the curve C . If the slopes of the tangents to the curve	
. ,	Q is another point on the curve C . If the slopes of the tangents to the curve	at P and Q a
. ,	Q is another point on the curve C . If the slopes of the tangents to the curve	
. ,	Q is another point on the curve C . If the slopes of the tangents to the curve	
. ,	Q is another point on the curve C . If the slopes of the tangents to the curve	

3.	Evaluate the following limits. (a) $\lim_{x\to 2} \frac{x^2 - x - 2}{x^2 - 3x + 2}$. (b) $\lim_{x\to 9} \frac{\sqrt{x - 5} - 2}{x^2 - 8x - 9}$. (c) $\lim_{x\to +\infty} \frac{x^3 - 5x^2 + 11x - 12}{2x^3 + 14x^2 - 7}$.	
		(8 marks)

4.	(a) (b) (c)	Expand $(3x+2)^6$ in ascending powers of x up to the term x^2 . Expand e^{-ax} in ascending powers of x up to the term x^2 . If the coefficient of x^2 in the expansion of $\frac{(3x+2)^6}{e^{ax}}$ is 720, find the values of a .
		(5 marks)

5.	dx	
	(a) $y = (7x-12)(3x+5)$, (b) $y = \frac{x^2}{5x-9}$.	
		(6 marks)
6.	Let $f(x) = \frac{x}{\sqrt{x^2 - 4}}$. Find $f'(3)$.	(3 marks)

Section B (20 marks)

7. In an experiment, the temperature (in $\,^{\circ}$ C) of a certain liquid can be modelled by

$$S = \frac{200}{1 + (2^{bt})a},$$

where a and b are constants and t is the number of hours elapsed since the start of the experiment.

- (a) Express $\ln\left(\frac{200}{S}-1\right)$ as a linear function of t. (2 marks)
- (b) It is found that the intercepts on the vertical axis and the horizontal axis of the graph of the linear function obtained in (a) are ln 4 and 4 respectively.
 - (i) Find a and b.
 - (ii) Find $\frac{dS}{dt}$ and $\frac{d^2S}{dt^2}$.

(6 marks)
(6 marks)

Let $f(x) = \frac{(\ln x)^2}{2x}$.	
Let $f(x) = \frac{(\ln x)^2}{2x}$. (a) Find $f'(x)$.	(2 ma
Let $f(x) = \frac{(\ln x)^2}{2x}$. (a) Find $f'(x)$. (b) If $f'(k) = 0$, where k is a constant, find the possible values of k .	
(a) Find $f'(x)$.	(2 ma
(a) Find $f'(x)$.	

_	en by $T = 25 - 21e^{-0.06t}$.	
(a)	Find the initial temperature of the bottle of juice.	(2 marks)
(b)	At least how long will it take for the temperature of the bottle of juice to be	
(-)	18°C? (Give your answer correct to the nearest minute.)	(3 marks)
(c)	Will the temperature of the bottle of juice reach 30°C? Justify your answer.	(3 marks)