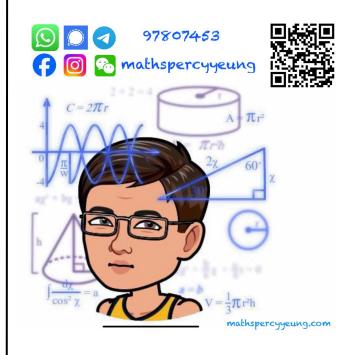

14-15 F.4 2nd TERM EXAM-MATH-EP(M1)



MATHEMATICS Extended Part Module 1 (Calculus and Statistics) Question–Answer Book

17th June, 2015 8:15 am – 9:45 am Time Allowed: 1 hour 30 minutes **This paper must be answered in English**

INSTRUCTIONS

- 1. Write your name, class and class number in the spaces provided on this cover.
- Answer ALL questions in this paper. Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- 3. Unless otherwise specified, all working must be clearly shown.
- 4. Unless otherwise specified, numerical answers should be either exact or given to 4 decimal places.
- 5. The diagrams in this paper are not necessarily drawn to scale.

Section A Total	/37
Section B Total	/23
Grand Total	/60

(a) Expand $(1+3x)$	$\int_{0}^{x} x^{2} dx$ in ascending powers of x u	p to the term x^2 .	
(b) Find the coeffici	tent of x^2 in the expansion	of $\frac{(1+3x)^8}{e^{2x}}$.	
			(4 marks

2.	2. When a balloon is being deflated, its radius r (in cm) will decrease with time t (in s) is given by $r = 5 + \frac{10}{1+t^2}$, where $t \ge 0$. It is known that the surface area A (in cm ²) balloon is given by $A = 4\pi r^2$. Find the rate of change, in terms of π , of the surface a the balloon when the radius is 10 cm.		
	(5 marks)		

	g
	mark
_	pe
٠	vill not
-	_
:	=
	⋛
	Sung
	margins w
	d)
7	Ę
	Ξ
	written
	SLS
	NSUN
•	ď,

3.	Evaluate the following indefinite integral. (a) $\int (x^2 - 3x + 1)\sqrt{x} dx$ (b) $\int (2x - 1)e^{5x^2 - 5x + 3} dx$	
	(b) $\int (2x-1)e^{5x^2-5x+3} dx$	
		(6 marks)
,		
,		

-	,ked
	t be mai
-	II not I
÷	— i
•	S W1
•	margins
-	the
•	딤
	written
	vers
•	Ans.

4.	(a) Find $\frac{d}{dx}(x \ln x)$ (b) Using (a) to evaluate $\int_{1}^{e} \ln x dx$.	
	(b) Using (a) to evaluate $\int_1^1 \ln x dx$.	(4 marks)

y = 5x + 9 is the tangent to the curve at point A.
(a) Find the coordinates of A.
(b) Find the equation of C.
(5 marks)

6.	Given that $f(x) = e^{-2x}(x^2 + 3x)$.
	(a) Find $f'(x)$ and $f''(x)$.
	(b) Hence solve the equation $f''(x) + f'(x) - 4f(x) = 3e^{-2x}$.
	(5 marks)

7.	In a city, the population of elder people x (in millions) at time t (in years) can be modelled
	by

$$x = \frac{5(t+0.3)}{\sqrt{t^2 + 3t + 6}} \quad \text{for} \quad t \ge 0.$$

On the other hand, the death rate of the city R% can be modelled by

 $R = a e^{bx}$, where a and b are positive constants and $x \ge 0$.

- (a) Express $\ln R$ as a linear function of x.
- (b) The values of R when t = 0, 1, 2 and 3 are recorded as follows:

t	0	1	2	3
R	1.28	1.47	1.60	1.68

- (i) Using the graph paper on Page 9, estimate the values of a and b. Correct your answers to 1 decimal place.
- (ii) Using the estimate values of a and b in (i), find the death rate after a long period of time.

Answers written in the margins will not be marked

		(8 marks)

Section B (23 marks)

8. A chemical is added to a bottle of liquid. The temperature $\theta(t)$ of the liquid can be modelled by

$$\theta(t) = \frac{4 + 20t + t^2}{e^{0.1t}} + k$$
,

where $\theta(t)$ is measured in °C, t ($t \ge 0$) is the time measured in seconds after the chemical has been added and k is a constant. It is given that $\theta(0) = 14$.

- (a) Find the value of k. (1 mark)
- (b) Find $\frac{d\theta(t)}{dt}$. (3 marks)

Answers written in the margins will not be marked

(c) Will the temperature of the liquid get higher than 100°C? Explain your answer.

(6 marks)

9.	After starting the promotion of a movie, the rate of change of the daily number of visits to
	the official website of the movie can be modelled by

$$\frac{dN}{dt} = \frac{40k - kt}{e^{\frac{t}{40}} + 5t} \quad (t \ge 0) ,$$

where N is the daily number of visits (in thousands) recorded at the end of a day, t is the number of days elapsed since the start of the promotion and k is a positive constant.

It is given that at the start of the promotion, N = 2 and $\frac{dN}{dt} = 4$.

- (a) (i) Let $u = 1 + 5te^{-\frac{t}{40}}$, find $\frac{du}{dt}$.
 - (ii) Find the value of k, and hence express N in terms of t.

(7 marks)

(b) Find the greatest daily number of visits, correct to the nearest integer.

(2 marks)

Answers written in the margins will not be marked

- (c) It is known that after 80 days from the start of the promotion, the rate of change of the daily number of visits becomes constant.
 - (i) Find the constant rate, correct to the nearest integer.
 - (ii) Find the daily number of visits after 100 days from the start of the promotion.

(4 marks)
