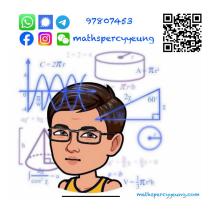

2018-2019 S4 2nd TERM EXAM-MATH-CP 1


MATHEMATICS Compulsory Part PAPER 1

Question-Answer Book

5th June, 2019 8:15 am – 9:45 am (1 hour 30 minutes) This paper must be answered in English

INSTRUCTIONS

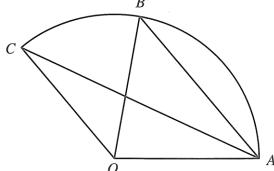
- 1. Write your name, class and class number in the spaces provided on this cover.
- 2. This paper consists of THREE sections, A(1), A(2) and B.
- 3. Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- 4. Unless otherwise specified, all working must be clearly shown.
- 5. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
- 6. The diagrams in this paper are not necessarily drawn to scale.

Sections	Marks
A (1 – 4)	/14
A (5 – 10)	/27
A Total	/41
B Total	/29
TOTAL	/70

	(4 mark
1	actorize a) $2xy - 2y$, b) $x^2 - 4x + 3$, c) $x^2 - 4x + 3 - 2xy + 2y$.

3.	Make a the subject of the formula $\frac{6a-2b+3}{4a} = 7$.	(3 marks)
4.	The cost of a toy car is \$40. It is sold at a profit percentage of 20%. (a) Find the selling price of the toy car.	
	(b) If the marked price of the toy car is \$80, find the discount percentage.	(4 marks)

Sec 5.	tion A(2) (27 marks) In the figure, O is the centre of the circle $ABCD$. It is given that $\angle ABO = 32^{\circ}$, $\angle ADC = 112^{\circ}$ and $\angle DCO = 44^{\circ}$. Find $\angle OBC$ and $\angle BAD$. (4 marks)
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$


(a)	nsider the points $A(0, 2)$, $B(2, 1)$ and $C(-4, 4)$. Show that A , B and C are collinear.	(2 marks)
(b)		(3 marks)

(a) (b)	stants. When it is divided by $x - 2$, the remainder is -15 . Find the values of m and n . Sam claims that the equation $x^3 + mx^2 + nx + 15 = 0$ has 3 distinct real respectively.	(3 marks)
(10)	agree? Explain your answer.	(3 marks)

8.

Answers written in the margins will not be marked.

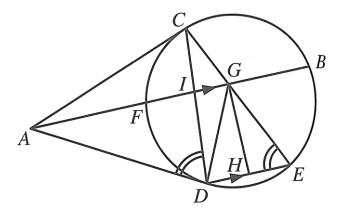
9. In the figure, OABC is a sector with centre O.AC is the angle bisector of $\angle OAB$.

(a) Are AB and OC parallel? Explain your answer.

(2 marks)

Answers written in the margins will not be marked.

(b) If $\angle AOB = 80^{\circ}$, find $\overrightarrow{AB} : \overrightarrow{BC}$.


(3 marks)

Sect	tion B (29 marks)	
10.	Solve $7 \cdot 3^{2x-1} = 11$. Give your answer correct to 3 significant figures if necessary.	(3 marks)
11	Consider the equation $2x^2 - 4x + k = 0$.	
11.	(a) Find the range of values of k if the equation has imaginary roots.	(2 marles)
		(2 marks)
	(b) Using the smallest integral value of k in (a), solve the equation.	(2 marks)

12.	The loudness of sound L (in dB) is given by $L = 10 \log \frac{I}{I_0}$, where I is the intensity of the	
	sound (in W/m ²) and I_0 is the minimum audible sound intensity for a normal person. It is given that $I_0 = 10^{-12}$ W/m ² .	
	(a) If the loudness of a sound is 35 dB, find the intensity of the sound. (2 marks)	
	(b) Amy claims that if the intensity of the sound in (a) is reduced to $\frac{1}{10000}$ of the original, a	
	normal person still can hear the new sound. Do you agree? Explain your answer.(2 marks)	
		ced.
		Answers written in the margins will not be marked.
		ill not l
		rgins w
		the ma
		tten in
		ers wri
		Answ

(a) Find the value of k.(b) Find the point of intersection.	(3 marks

14. In the figure, AC is the tangent to the circle at C. AFIGB, CID and CGE are straight lines. AB // DE and $\angle CED = \angle CDA$.

Prove that

- (a) (i) AD is the tangent to the circle at D.
 - (ii) A, C, G and D are concyclic.

Answers written in the margins will not be marked.

(III) ΔDEG is an isosceles triangle.	(6 marks)
(b) If GH is the angle bisector of $\angle DGE$, prove that the centre of	the circle must lie on the line
passing through G and H .	(3 marks)
pussing unough o unu iii	(e marne)

through $(8, 2)$ and the x-intercept of G is 2. Express x in terms of y.	(4 mark