2022-2023-S5 2nd TERM UT-MATH-CP 1

2022-2023 S5 2nd TERM UT MATH CP PAPER 1

> 2022 – 2023 S5 Second Term Uniform Test

MATHEMATICS Compulsory Part

PAPER 1

Question–Answer Book

20th March, 2023 8:15 am – 9:30 am (1 hour 15 minutes) **This paper must be answered in English**

INSTRUCTIONS

- 1. Write your name, class and class number in the spaces provided on this cover.
- This paper consists of THREE sections, A(1), A(2) and B.
- Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question – Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- 4. Unless otherwise specified, all working must be clearly shown.
- 5. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
- 6. The diagrams in this paper are not necessarily drawn to scale.

Sections	Marks
A (1 – 4)	
A (5 – 8)	
A Total	/39
B Total	/23
TOTAL	/62

Section A(1) (18 marks) Simplify $\frac{(x^{-2}y^3)^3}{x^{-4}y}$ and express your answer with positive indices. 1. (3 marks) Make q the subject of the formula $p = \frac{5q+3}{4q}$. (3 marks) 2. Factorize 3. (a) $16m^2 - 9n^2$, (b) $16m^2 - 9n^2 - 8m - 6n$. (3 marks)

Answers written in the margins will not be marked

2022-2023-S5 2nd TERM UT-MATH-CP 1-2

- 4. Jenny has several coins, 5 of them are ten-dollar coins, 2 of them are five-dollar coins, 1 of them is a two-dollar coin and 2 of them are one-dollar coins. If she selects a coin at random, find
 - (a) the probability of selecting a five-dollar coin,
 - (b) the expected value of the amount obtained.

(3 marks)

Answers written in the margins will not be marked

The coordinates of the points M and N are (-1, 2) and (-4, -5) respectively. M' is the 5. reflection image of M with respect to the x-axis. N is rotated anticlockwise about the origin O through 270° to N'. (a) Write down the coordinates of M' and N'. (b) Let P be a moving point in the rectangular coordinate plane such that P is equidistant from M' and N'. Describe the geometric relation between the locus of P and M'N'. (i) (ii) Find the equation of the locus of *P*. (6 marks)

Answers written in the margins will not be marked

Section A(2) (21 marks)

6. The stem-and-leaf diagram below shows the distribution of bonuses (in hundred dollars) of 20 salesmen of a company. It is known that the mean is equal to the median of the distribution.

			D	listri	ibuti	on o	f b	on	use	es of	f 20	sale	esm	en o	of a	com	par	IV				
			Ster	n (th	iouse	ands))	Le	af (hun	dree	ds)					1	v				
						2		1	2	2	4	4	4	5								
						3		0	2	x	3	3	5	6	8							
						4		y	3	8	8	9										
(a)	Find	dx ar	nd y.					-													(3 ma	rks)
(b)	(i)	Am	y is c	one o	of the	sale	esm	nen	. If	her	bon	ius g	gain	ed i	s \$4	300), fii	nd h	er st	tanda	ard sco	re.
																					(3 ma	rks)
	(ii)	If tl	ne da	ta w	hich	are	equ	ual	to	the	mea	an a	re r	emc	vec	, fin	d tł	ne p	erce	ntage	e chang	ge o
		the	stand	lard s	score	e of A	4m	ıy.													(3 ma	rks)
(Gir		יוו מי	Guar	e 00r	reat	to 2	cio	- mif	100	nt fi	our	ec if	f ner	יפפפ	arr							
·····																						

In the figure, two straight lines L_1 and L_2 intersect at A. The equations of L_1 and L_2 are 7. 2x-3y+18=0 and x+3y-9=0 respectively. L L_2 3 0 -9 (a) Write down the system of inequalities whose solutions are represented by the shaded region. (2 marks) (b) Find the maximum value of P = -3x + 5y subject to the constraints obtained in (a). (4 marks)

Answers written in the margins will not be marked

A ci	Fircle passes through $A(2, 0)$ and $B(-3, -1)$. The centre C of the circle lies on the y-axis.								
(a) (b)	Find the coordinates of <i>C</i> . Find the equation of the circle.	(2 marks) (2 marks)							
(c)	Given that $P(-2, a)$ lies on the circle, find the value(s) of a .	(2 marks)							

2022-2023-S5 2nd TERM UT-MATH-CP 1-6

Sect	tion]	B (23 marks)										
9.	13 0	different teams from zone A , 9 different teams from zone B and 10 different teams from										
	zon	he C join a chess competition. In how many ways can 4 teams in the semi-fit	hals be formed									
	if											
	(a)	all teams come from the same zone?	(2 marks)									
	(b)	at least 1 team from each zone?	(2 marks)									
	(c)	exactly 2 teams from one zone and 2 teams from another zone?	(2 marks)									

10.	<i>L</i> is a straight line with slope <i>m</i> , where $m < 0$, and passes through $P(0, 5)$. <i>L</i> touches the circle $C_1: x^2 + y^2 + 6x - 8y + 17 = 0$ at <i>Q</i> and <i>L</i> cuts the <i>x</i> -axis at <i>R</i> . Let <i>A</i> be the centre of the circle.										
	(a)										
		(Leave your answers in surd form if necessary.)	(2 marks)								
	(b)	Find the value of <i>m</i> .	(3 marks)								
	(c)	Find the coordinates of Q and R .	(3 marks)								
	(d)	C_2 is another circle with centre B touching L such that A, R and B are collinea	r. The ratio								
		of radius of C_1 to that of C_2 is 2 : 1. Find the equation of C_2 .	(3 marks)								

2022-2023-S5 2nd TERM UT-MATH-CP 1-8

2022-2023-S5 2nd TERM UT-MATH-CP 1-9

- 11. Robert is a university student and he is taking one course in Psychology and one course in Marketing.
 - (a) He estimates his probability of passing the Psychology course is 0.45 and that of passing the Marketing course is 0.55. Furthermore, he estimates his probability of passing at least one course is 0.9. Find the probability that he passes both Psychology and Marketing courses.
 (3 marks)
 - (b) After the mid-term tests, Robert reassesses his probability of passing the Psychology course is 0.75. Meanwhile, his probability of passing at least one course is 0.8 and that of passing both courses is 0.2. If his probability of passing the Marketing course is less than 0.5, he will drop the Marketing course. Will he drop the Marketing course? Explain your answer. (3 marks)

END OF PAPER	