2022-2023-S5 1 st TERM EXAM-MATH-CP 2

S5 First Term Examination

MATHEMATICS Compulsory Part PAPER 2

6th January, 2023 10:30 am – 11:30 am (1 hour) Total Marks : 36

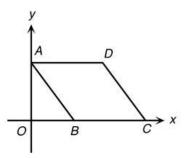
INSTRUCTIONS

- 1. Read carefully the instructions on the Answer Sheet. After the announcement of the start of the examination, you should insert the information required in the spaces provided.
- 2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS**. You should use an HB pencil to mark all your answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

There are 24 questions in Section A and 12 questions in Section B.

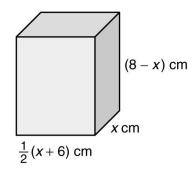
The diagrams in this paper are not necessarily drawn to scale.

Choose the best answer for each question.


Section A

- Simplify $[(x^{-2}y^0)^{-3}]^2$.

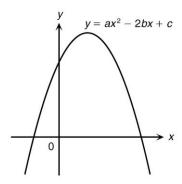
 - B. x^{12} C. $x^{12}y^6$
- 2. 0.0035456789 =
 - A. 0.00355 (correct to 6 decimal places).
 - B. 0.003545 (correct to 6 decimal places).
 - C. 0.003546 (correct to 6 significant figures).
 - D. 0.00354568 (correct to 6 significant figures).
- 3. $p^2 + 2pq + q^2 p q =$
 - A. (p+q)(p-q-1).
 - B. (p+q)(p+q-1).
 - C. (p-q)(p-q+1).
 - D. (p-q)(p+q-1).
- 4. If $\frac{b}{x} + \frac{a}{v} = 2$, then x =
 - A. $\frac{ay}{2y-b}$.


 - D. $\frac{by}{a-2y}$.

- Which of the following equations has irrational roots?
 - I. $3x - \pi = 0$
 - II. 6x = 11
 - III. $x^2 = 24$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 6. A sum of \$50000 is deposited at an interest rate of 8% per annum for 1 year, compounded monthly. Find the interest correct to the nearest dollar.
 - A. \$4000
 - B. \$4122
 - C. \$4143
 - D. \$4150
- 7. In the figure, ABCD is a parallelogram. If the equations of AB and DC are 4x+3y-12=0 and 4x+3y-32=0respectively, find the coordinates of D.

- A. (5, 4)
- B. (6, 4)
- C. (4, 5)
- D. (4, 6)

8. In the figure, the total surface area of the cuboid is 102 cm². Find the volume of the cuboid.

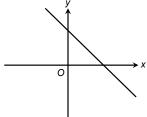


- A. 67.5 cm^3
- B. 80 cm^3
- C. 92.5 cm^3
- D. 102 cm^3
- 9. Consider the function $f(x) = \frac{1}{\sqrt{x-1} \sqrt{x}}$.

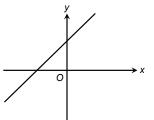
Which of the following may be a domain of f(x)?

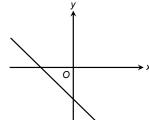
- A. All real numbers
- B. All real numbers except 0
- C. All real numbers greater than or equal to $\boldsymbol{0}$
- D. All real numbers greater than or equal to 1
- 10. It is given that $x^{1984}+k$ is divisible by x-1. When $x^{1984}+3k$ is divided by x+1, the remainder is
 - A. -2.
 - B. -1.
 - C. 1.
 - $D.\quad \ 2\,.$

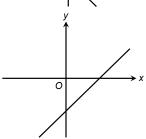
- 11. Solve the compound inequality $2(4x-3)+1 \ge 51$ and x > 14-x.
 - A. x > 7
 - B. $x \ge 7$
 - C. x = 7
 - D. No solutions
- 12. The figure shows the graph of $y = ax^2 2bx + c$. Which of the following are true?



- I. a > 0
- II. c > 0
- III. $ac < b^2$
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- 13. The coordinates of the point P are (7,-5). P is reflected with respect to the y-axis to the point Q. Q is then rotated clockwise about the origin through 90° to the point R. Find the x-coordinate of R.
 - A. -7
 - B. -5
 - C. 5
 - D. 7


14. If a > 0 and b < 0, which of the following graphs may represent the straight line $\frac{x}{a} + \frac{y}{b} + 1 = 0$?

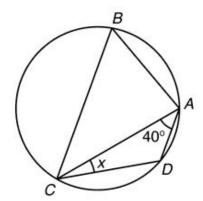

A.


B.

C.

D.

15. It is given that z varies directly as x^3 and inversely as \sqrt{y} . Which of the following must be a constant?


A.
$$\frac{zy}{x^6}$$

B.
$$\frac{z^2\sqrt{y}}{x^3}$$

C.
$$\frac{z^2y}{x^6}$$

D.
$$\frac{z^2y}{x^3}$$

16. In the figure, $\widehat{AB}:\widehat{BC}:\widehat{CD}=1:2:1$ and $\angle CAD = 40^{\circ}$. Find x.

20° A.

40° B.

C. 50°

60° D.

17. Find the range of values of x that satisfies $(x-2)^2 + 3(x-2) - 10 \ge 0$.

A.
$$x \ge -3$$

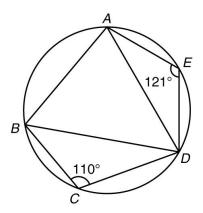
B.
$$x \ge 4$$

C.
$$-3 \le x \le 4$$

D.
$$x \le -3$$
 or $x \ge 4$

18. Which of the following equations represents a real circle?

A.
$$x^2 - y^2 - 6x - 14y + 3 = 0$$


B.
$$x^2 + y^2 + 2x + 3 = 0$$

C.
$$x^2 + y^2 - 2x + 4y + 5 = 0$$

D.
$$2x^2 + 2y^2 + x - y = 0$$

- 19. It is given that z varies inversely as x and y^2 . If x is increased by 60% and y is decreased by 50%, find the percentage change in z.
 - A. Decreased by 20%
 - B. Decreased by 60%
 - C. Increased by 25%
 - D. Increased by 150%

- 20. Consider two circles $C_1: x^2 + y^2 + 8x 6y 25 = 0$ and $C_2: x^2 + y^2 8x + 6y 25 = 0$. Which of the following is/are true?
 - I. C_1 and C_2 are concentric circles.
 - II. The lengths of diameters of C_1 and C_2 are the same.
 - III. Both C_1 and C_2 cut the y-axis at two points.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 21. In the figure, $\angle AED = 121^{\circ}$ and $\angle BCD = 110^{\circ}$. Find $\angle ADB$.

- A. 39°
- B. 41°
- C. 51°
- D. 65°
- 22. If β is a root of the equation $3x^2 + 2x 3 = 0$, then $6\beta^2 + 4\beta 7 =$
 - A. -4.
 - B. -1.
 - C. 0.
 - D. 4.

- 23. Given two straight lines *AB* and *CD* that are perpendicular to each other. If *P* is a moving point such that it is equidistant from *AB* and *CD*, which of the following MUST be true?
 - I. The locus of *P* is two straight lines that are perpendicular to each other.
 - II. The locus of *P* is two parallel straight lines.
 - III. The locus of P is the angle bisectors of the angles formed by AB and CD.
 - A. I only
 - B. II only
 - C. I and III only
 - D. II and III only
- 24. The stem-and-leaf diagram below shows the distribution of the numbers of books read by 20 students in a year.

Stem (tens)	Leaf (units) 1 2 2 8 a a 0 2 4 5 5 7 8						
2	1	2	2	8			
3	а	a					
4	0	2	4	5	5	7	8
5	3						
6	b	b	9	9			
7	0	8					

If the inter-quartile range of the above distribution is at most 25, which of the following must be true?

- I. $5 \le a \le 9$
- II. $0 \le b \le 4$
- III. $1 \le a b \le 6$
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

Section B

25. If
$$\frac{9x+2}{(x-7)(x+6)} = \frac{A}{x-7} + \frac{B}{x+6}$$
, then

A.
$$A = -5$$
, $B = -4$.

B.
$$A = -5, B = 4$$
.

C.
$$A = 5, B = -4$$
.

D.
$$A = 5, B = 4$$
.

26. If
$$k$$
 and $\frac{5}{2-i} + ki$ are real numbers,

then
$$k =$$

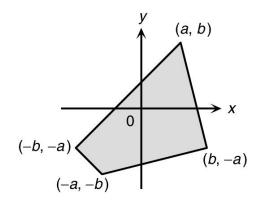
$$B. -1.$$

27. Find the H.C.F. and L.C.M. of
$$5(49x^2 - 28x + 4)$$
, $42x^2 + 240x - 72$ and $10x^2 + 120x + 360$.

	H.C.F.	<u>L.C.M.</u>
A.	1	30(7x-2)(x+6)
B.	1	$30(7x-2)^2(x+6)^2$
C.	30	(7x-2)(x+6)
D.	30	$(7x-2)^2(x+6)^2$

28. If
$$\begin{cases} \alpha^2 + 6\alpha - 3 = 0 \\ \beta^2 + 6\beta - 3 = 0 \end{cases}$$
 and $\alpha \neq \beta$, then
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} =$$
A. -14.

29. Solve
$$\begin{cases} 3^{x+2y} = 1 \\ (4^x)(8^y) = 2 \end{cases}$$


A.
$$x = 2$$
, $y = 1$

B.
$$x = -2$$
, $y = 1$

C.
$$x = 2$$
, $y = -1$

D.
$$x = -2$$
, $y = -1$

30. In the figure, at which point in the shaded region does P = -ax - by + 3 attain its minimum value?

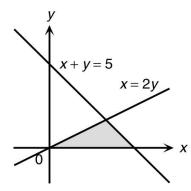
A.
$$(a, b)$$

B.
$$(b, -a)$$

C.
$$(-a, -b)$$

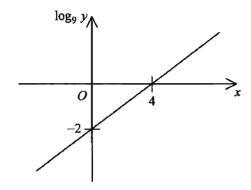
D.
$$(-b, -a)$$

31. The standard deviation of a set of 100 data $\{x_1, x_2, x_3, ..., x_{100}\}$ is σ . Which of the following set of data has a standard deviation σ^2 ?

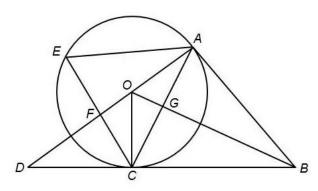

A.
$$\{x_1 + \sigma, x_2 + \sigma, x_3 + \sigma, ..., x_{100} + \sigma\}$$

B.
$$\{\sigma x_1, \ \sigma x_2, \ \sigma x_3, ..., \ \sigma x_{100}\}$$

C.
$$\{\sigma^2 x_1, \ \sigma^2 x_2, \ \sigma^2 x_3, ..., \ \sigma^2 x_{100}\}$$


D.
$$\{x_1 + \sigma^2, x_2 + \sigma^2, x_3 + \sigma^2, ..., x_{100} + \sigma^2\}$$

32. Which of the following systems of inequalities has its solutions represented by the shaded region in the figure?


- A. $\begin{cases} x \ge 0 \\ x + y \ge 5 \\ x \ge 2y \end{cases}$
- B. $\begin{cases} x \ge 0 \\ x + y \le 5 \\ x \le 2y \end{cases}$
- C. $\begin{cases} y \ge 0 \\ x + y \le 5 \\ x \ge 2y \end{cases}$
- D. $\begin{cases} y \ge 0 \\ x + y \ge 5 \\ x \ge 2y \end{cases}$
- 33. The graph in the figure shows the linear relation between x and $\log_9 y$.

 If $y = ab^x$, then b =

- A. –2
- B. $\frac{1}{81}$
- C. $\frac{1}{2}$
- D. 3.

- 34. Consider the circle $C: x^2 + y^2 2x + 8y + 7 = 0$ and the straight line L: x + 2y + 1 = 0. Which of the following is/are true?
 - I. L and C have two intersections.
 - II. The centre of C lies in quadrant II.
 - III. L passes through the centre of C.
 - A. I only
 - B. III only
 - C. I and II only
 - D. II and III only
- 35. In the figure, BA and BD are tangents to the circle at A and C respectively. OB intersects AC at G. AOFD and EFC are straight lines. If AE = AC, which of the following must be true?

- I. O, F, C and G are concyclic.
- II. $\triangle OCD \sim \triangle BAD$
- III. AC bisects $\angle ECB$.
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

2022-2023-S5 1st TERM EXAM-MATH-CP 2-7

- 36. The heights of 600 children of the same age are normally distributed with a mean of 120 cm and a standard deviation of 5 cm. How many children are there with heights between 110 cm and 125 cm?
 - A. 180
 - B. 408
 - C. 489
 - D. 585