2022-2023 S4 $2^{\text {nd }}$ TERM UT MATH CP
 $$
2022-2023
$$
 S4 Second Term Uniform Test
 MATHEMATICS Compulsory Part Question-Answer Book

$16^{\text {th }}$ March, 2023
8:15 am - 9:30 am (1 hour 15 minutes)
This paper must be answered in English

INSTRUCTIONS

1. Write your name, class and class number in the spaces provided on this cover.
2. Answer ALL questions in Section A. You should use an HB pencil to mark all the answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured. You should mark only ONE answer for each question. If you mark more than one answer, you will receive NO MARKS for that question.
3. Attempt ALL questions in Sections B and C. Write your answers in the spaces provided in this Question - Answer Book.
4. Unless otherwise specified, all working must be clearly shown and numerical answers should be either exact or correct to 3 significant figures.
5. The diagrams in this paper are not necessarily drawn to scale.

Sections	Marks	
A Total	$/ 26$	
B (14-16)		
B (17-20)	$/ \mathbf{2 8}$	
B Total		
C Total		
TOTAL		

Section A (26 marks)

Choose the best answer for each question.

1. If $a>0$ and $b>0$, then $\frac{1}{\sqrt[3]{a^{-1} b^{3}}}=$
A. $\frac{a^{\frac{3}{2}}}{b^{\frac{9}{2}}}$.
B. $a^{\frac{1}{3}} b$.
C. $\frac{b^{\frac{3}{2}}}{a^{\frac{1}{2}}}$.
D. $\frac{a^{\frac{1}{3}}}{b}$.
2. Simplify $\frac{3}{12 x+6 y}+\frac{1}{4 y-8 x}$.
A. $\frac{2 x-3 y}{2\left(2 x^{2}-y^{2}\right)}$
B. $\frac{3 y-2 x}{2(2 x+y)(2 x-y)}$
C. $\frac{2 x-3 y}{4(2 x+y)(2 x-y)}$
D. $\frac{6 x-y}{4(2 x+y)(2 x-y)}$
3. If $4^{x+1}=3\left(2^{2 x}\right)+64$, then $x=$
A. 3 .
B. 4 .
C. 6 .
D. 8 .
4. If $\log x<0$, then the range of values of x is
A. $x<1$.
B. $-1<x<0$.
C. $0<x<1$.
D. $x>1$.
5. The figure shows the graphs of $y=a^{x}$, $y=b^{x}$ and $y=c^{x}$, where a, b and c are distinct positive constants and not equal to 1 . Which of the following must be true?

I. $a>b$
II. $a b<4$
III. $a c>b c$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
6. In the figure, O is the centre of the circle. $\widehat{A B}: \overparen{B C}=1: 2$ and $\angle O B C=45^{\circ}$.

Which of the following must be true?
I. $O A / / C B$
II. $\angle O A C=22.5^{\circ}$
III. major $\overparen{A C}=5 \overparen{A B}$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
7. In the figure, O is the centre of the circle. $A B$ and $B C$ are equal chords, and $\overparen{C D}=\overparen{D E}$. If $\angle B O C=35^{\circ} \quad$ and $\angle A O E=130^{\circ}$, then $\angle C O D=$

A. 70°.
B. 80°.
C. 95°.
D. 160°.
8. Solve the equation

$$
\log (x+2)+\log (x-3)=\log x^{2} .
$$

A. $x=-6$
B. $x=2$
C. $x=4$
D. No solutions
9. Find the remainder when $\mathrm{f}(x)=(x-1)^{4 n}-(x+1)^{2 n}$ is divided by x, where n is a positive integer.
A. -2
B. 0
C. 2
D. $2^{2 n}$
10. If $\log 3=a$ and $\log 5=b$, express $\log 4.5$ in terms of a and b.
A. $2 a+b-1$
B. $2 a-b+1$
C. $a-2 b+1$
D. $a+2 b-1$
11. The figure shows the graph of $y=a x^{2}+b x+c$.

Which of the following may represent the graph of $y=c x^{2}+a x+b$?
A.

B.

C.

D.

12. Which of the following is the largest?
A. 435^{867}
B. 272^{876}
C. 345^{768}
D. 453^{786}
13. Three straight lines $L_{1}: 36 x-48 y+11=0$, $L_{2}: 9 x-12 y+2=0$ and $L_{3}: 4 x+3 y-5=0$ are given. Which of the following is / are true?
I. $L_{2} \perp L_{3}$
II. $\quad L_{1}$ and L_{2} have no intersections.
III. L_{1} and L_{3} have infinitely many intersections.
A. I only
B. I and II only
C. I and III only
D. II and III only

Section B(1) (13 marks)

14. Simplify $\left(\frac{a^{-4}}{c^{-2}}\right)\left(\frac{a^{3}}{2 c^{2}}\right)^{5}$ and express the answer with positive indices.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
15. Make b the subject of the formula $\frac{1}{a}-\frac{1}{b}=\frac{1}{c}$.
\qquad
\qquad
\qquad \cdots
\qquad
\qquad
\qquad
\qquad
16. (a) Factorize $3 a^{2}+a b-2 b^{2}$.
(b) Hence, factorize $3 a^{2}+a b-2 b^{2}+2 b-3 a$.
\qquad
17. In the figure, the straight line $L_{1}: 2 x-y-4=0$ and L_{2} are perpendicular to each other and intersect at point A. The y-intercept of L_{1} is -4 and L_{2} passes through $(3,-3)$.
(a) Find the equation of L_{2}.
(b) Find the coordinates of A.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad (Can
\qquad
\qquad

Section B(2) (15 marks)

18. The value $\$ V$ of an antique vase after t years can be estimated by $V(t)=500000 \times a^{0.1 t}$, where a is a positive constant. It is given that the value of the antique vase will be $\$ 4500000$ after 20 years.
(a) Find the current value of the antique vase.
(b) Find the value of a.
(c) Estimate the increase in the value of the antique vase in the $8^{\text {th }}$ year.
\qquad
19. Let a and b be constants. When $\mathrm{f}(x)=6 x^{3}+a x^{2}+31 x-17$ is divided by $2 x+7$, the quotient is $3 x^{2}+b x-2$ and $\mathrm{f}\left(\frac{-7}{2}\right)=-3$.
(a) Find the values of a and b.
(b) Solve the equation $\mathrm{f}(x)+3=0$.
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

20. In the figure, O is the centre of the circle $P S Q R$. $P O R$ is a straight line. $P S=S Q$ and $\angle R O Q=84^{\circ}$. Find $\angle Q P S$.
(5 marks)
\qquad T.
 Y相

\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

Section C (16 marks)

21. Simplify $\frac{3 \log \sqrt{x}-\log x^{5}}{\log x^{4}}$ where $x>0$ and $x \neq 1$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
22. The figure shows a linear relation between x and $\log _{3} y$. Express the relation between x and y in the form $y=k a^{x}$, where k and a are constants.
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad Cox max 2-a
23. (a) Let d be a constant. Find the value of d such that $x+8$ is the factor of $x^{3}+d x^{2}+54 x+48$.
(b) The figure shows the graph of $y=x^{2}+14 x+54 . B$ is a variable point on the graph. A is the foot of perpendicular from B to the x-axis.

(i) Let $(a, 0)$ be the coordinates of A. Express the area of $\triangle O A B$ in terms of a.
(ii) How many different positions of A are there such that the area of $\triangle O A B$ is 24 ? Explain your answer.
(iii) Assume a is an integer. Find the perimeter of $\triangle O A B$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\rightarrow 3$ I.3.|
 $\therefore \rightarrow a_{0}+a_{0}$
\qquad

\qquad
\qquad
\qquad

