2022-2023-S4 1st TERM EXAM-MATH-CP 1

2022-2023 S4 1st TERM EXAM MATH CP PAPER 1

> 2022 – 2023 S4 First Term Examination

MATHEMATICS Compulsory Part

PAPER 1

Question–Answer Book

9th January, 2023 8:15 am – 9:15 am (1 hour) **This paper must be answered in English**

INSTRUCTIONS

- 1. Write your name, class and class number in the spaces provided on this cover.
- This paper consists of THREE sections, A(1), A(2) and B.
- Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question – Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- 4. Unless otherwise specified, all working must be clearly shown.
- 5. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
- 6. The diagrams in this paper are not necessarily drawn to scale.

Sections	Marks
A (1 – 3)	
A (4 – 8)	
A Total	/36
B Total	/14
TOTAL	/50

Simplify	$\overline{(m^{-2}n^5)^3}$	and express your answer with positive indices.	(5 mark
Make <i>d</i> t	he subject	of the formula $\frac{2}{3} = -5$.	(3 mark
Make d t	he subject	of the formula $\frac{2}{c} - \frac{3}{d} = -5$.	(3 mark
Make <i>d</i> t	he subject	of the formula $\frac{2}{c} - \frac{3}{d} = -5$.	(3 mark
Make <i>d</i> t	he subject	of the formula $\frac{2}{c} - \frac{3}{d} = -5$.	(3 mark
Make <i>d</i> t	he subject	of the formula $\frac{2}{c} - \frac{3}{d} = -5$.	(3 mark
Make d t	he subject	of the formula $\frac{2}{c} - \frac{3}{d} = -5$.	(3 mark
Make <i>d</i> t	he subject	of the formula $\frac{2}{c} - \frac{3}{d} = -5$.	(3 mark
Make <i>d</i> t	he subject	of the formula $\frac{2}{c} - \frac{3}{d} = -5$.	(3 mark
Make <i>d</i> t	he subject	of the formula $\frac{2}{c} - \frac{3}{d} = -5$.	(3 mark
Make <i>d</i> t	he subject	of the formula $\frac{2}{c} - \frac{3}{d} = -5$.	(3 mark
Make d t	he subject	of the formula $\frac{2}{c} - \frac{3}{d} = -5$.	(3 mark
Make d t	he subject	of the formula $\frac{2}{c} - \frac{3}{d} = -5$.	(3 mark

Fact	$3r^2 - 5rv - 2v^2$	
(a) (h)	3x - 5xy - 2y, $9x + 3y - 3x^2 + 5xy + 2y^2$	(1 ma
(0)	$y_x + 5y - 5x + 5xy + 2y$	(4 mai
If th	the quadratic equation $3x^2 + 2x - k = 1$ has real root(s), find the range of value	es of <i>k</i> . (3 mar
If th	the quadratic equation $3x^2 + 2x - k = 1$ has real root(s), find the range of value	es of <i>k</i> . (3 mar
If th	The quadratic equation $3x^2 + 2x - k = 1$ has real root(s), find the range of value	es of <i>k</i> . (3 mar
If th	the quadratic equation $3x^2 + 2x - k = 1$ has real root(s), find the range of value	es of <i>k</i> . (3 mar
If th	The quadratic equation $3x^2 + 2x - k = 1$ has real root(s), find the range of value	es of <i>k</i> . (3 mar
If the	the quadratic equation $3x^2 + 2x - k = 1$ has real root(s), find the range of value	es of <i>k</i> . (3 mar
If th	The quadratic equation $3x^2 + 2x - k = 1$ has real root(s), find the range of value	es of <i>k</i> . (3 mar
If th	The quadratic equation $3x^2 + 2x - k = 1$ has real root(s), find the range of value	es of <i>k</i> . (3 mar
If th	The quadratic equation $3x^2 + 2x - k = 1$ has real root(s), find the range of value	es of <i>k</i> . (3 mar
If th	the quadratic equation $3x^2 + 2x - k = 1$ has real root(s), find the range of value	es of <i>k</i> . (3 mar
If th	The quadratic equation $3x^2 + 2x - k = 1$ has real root(s), find the range of value	es of <i>k</i> . (3 mar
If th	The quadratic equation $3x^2 + 2x - k = 1$ has real root(s), find the range of value	es of <i>k</i> . (3 mar
If th	the quadratic equation $3x^2 + 2x - k = 1$ has real root(s), find the range of value	es of <i>k</i> . (3 mar
If th	The quadratic equation $3x^2 + 2x - k = 1$ has real root(s), find the range of value	es of <i>k</i> . (3 mar
	The quadratic equation $3x^2 + 2x - k = 1$ has real root(s), find the range of value	es of <i>k</i> . (3 mar
	The quadratic equation $3x^2 + 2x - k = 1$ has real root(s), find the range of value	es of <i>k</i> . (3 mar
	The quadratic equation $3x^2 + 2x - k = 1$ has real root(s), find the range of value	es of <i>k</i> . (3 mar
	The quadratic equation $3x^2 + 2x - k = 1$ has real root(s), find the range of value	es of <i>k</i> . (3 mar
	The quadratic equation $3x^2 + 2x - k = 1$ has real root(s), find the range of value	es of <i>k</i> . (3 mar
	the quadratic equation $3x^2 + 2x - k = 1$ has real root(s), find the range of value	es of <i>k</i> . (3 mar
	the quadratic equation $3x^2 + 2x - k = 1$ has real root(s), find the range of value	es of <i>k</i> . (3 mar
	the quadratic equation $3x^2 + 2x - k = 1$ has real root(s), find the range of value	es of <i>k</i> . (3 mai

Simplify $5\sqrt{x^3} + \frac{10x}{\sqrt{36x}} - 2x\sqrt{x}$.	(3 ma

Section A(2) (20 marks)

(a)	Find $\sigma(\mathbf{r})$	(3 mar
(a) (b)	Find $g(x)$. Find the remainder when $f(x) = x^3 + x^2 - 9x - 5$ is divided by $x + 1$.	(2 mar)
(0)	The meterial definition $f(x) = x + x - 5x - 5$ is divided by $x + 1$.	(2 man

Answers written in the margins will not be marked

(a) (b)	Find the coordinates of <i>P</i> . If the straight line L_3 passes through <i>P</i> and perpendicular to L_2 , find the equation L_3 .	(2 marks ation of (3 marks
(c)	Find the area bounded by x-axis, L_1 and L_3 .	(3 mark

8. The figure shows the graph of the function $y = -(x+2)^2 + 16$. Find the coordinates of *A*, *B*, *C*, the vertex *V* and the axis of symmetry. (7 marks)

Answers written in the margins will not be marked

Section B (14 marks)

9. The figure shows two straight lines $L_1: x = -1$ and $L_2: x + 2y = k$. L_1 intersects L_2 at A(-1,4) and cuts the x-axis at B. C(3, p) is a point on L_2 and O is the origin. D is a point on L_2 such that BD is perpendicular to L_2 .

- (a) Find the values of k and p.
 - (b) (i) Find the coordinates of D.
 - (ii) Is *BD* the perpendicular bisector of *AC*? Explain your answer.

(4 marks)

(3 marks)

Let f(x	<i>a</i> and <i>b</i> be constants. It is given that $f(x)$ is divided by $2x+1$, the remainder is	$x^{2} = x^{3} + ax^{2} + bx - 4$ is divisible by $x + \frac{9}{8}$.	⊦1. When
(a) (b) (c)	Find the values of <i>a</i> and <i>b</i> . Factorize $f(x)$. Peter claims that the equation $f(x) = 0$	has three distinct real roots. Do you as	(3 marks (2 marks gree?
	Explain your answer.		(2 marks
