

MATHEMATICS Compulsory Part

PAPER 1

Question-Answer Book

$9^{\text {th }}$ January, 2023
8:15 am - 9:15 am (1 hour)
This paper must be answered in English

INSTRUCTIONS

1. Write your name, class and class number in the spaces provided on this cover.
2. This paper consists of THREE sections, $\mathrm{A}(1)$, $\mathrm{A}(2)$ and B .
3. Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question - Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
4. Unless otherwise specified, all working must be clearly shown.
5. Unless otherwise specified, numerical answers should be either exact or correct to 3 significant figures.
6. The diagrams in this paper are not necessarily drawn to scale.

Sections	Marks
$\mathrm{A}(1-3)$	
$\mathrm{A}(4-8)$	$/ \mathbf{3 6}$
A Total	$/ \mathbf{1 4}$
B Total	
TOTAL	

Section A(1) (16 marks)

1. Simplify $\frac{m^{4} n^{-3}}{\left(m^{-2} n^{5}\right)^{3}}$ and express your answer with positive indices.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2. Make d the subject of the formula $\frac{2}{c}-\frac{3}{d}=-5$.
\qquad
3. Factorize
(a) $3 x^{2}-5 x y-2 y^{2}$,
(b) $9 x+3 y-3 x^{2}+5 x y+2 y^{2}$.
\qquad
4. If the quadratic equation $3 x^{2}+2 x-k=1$ has real $\operatorname{root}(\mathrm{s})$, find the range of values of k.
5. Simplify $5 \sqrt{x^{3}}+\frac{18 x^{2}}{\sqrt{36 x}}-2 x \sqrt{x}$.
\qquad

Section A(2) (20 marks)

6. When a polynomial $\mathrm{f}(x)=x^{3}+x^{2}-9 x-5$ is divided by $\mathrm{g}(x)$, the quotient is $x^{2}+3 x-3$ and the remainder is -11 .
(a) Find $\mathrm{g}(x)$.
(b) Find the remainder when $\mathrm{f}(x)=x^{3}+x^{2}-9 x-5$ is divided by $x+1$.
7. Two straight lines $L_{1}: 5 x-8 y+20=0$ and $L_{2}: 2 x-5 y+17=0$ intersect at the point P.
(a) Find the coordinates of P.
(b) If the straight line L_{3} passes through P and perpendicular to L_{2}, find the equation of L_{3} 。
(c) Find the area bounded by x-axis, L_{1} and L_{3}.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
8. The figure shows the graph of the function $y=-(x+2)^{2}+16$. Find the coordinates of A, B, C, the vertex V and the axis of symmetry.

Section B (14 marks)

9. The figure shows two straight lines $L_{1}: x=-1$ and $L_{2}: x+2 y=k$. L_{1} intersects L_{2} at $A(-1,4)$ and cuts the x-axis at $B . C(3, p)$ is a point on L_{2} and O is the origin. D is a point on L_{2} such that $B D$ is perpendicular to L_{2}.

(a) Find the values of k and p.
(b) (i) Find the coordinates of D.
(ii) Is $B D$ the perpendicular bisector of $A C$? Explain your answer.
10. Let a and b be constants. It is given that $\mathrm{f}(x)=x^{3}+a x^{2}+b x-4$ is divisible by $x+1$. When $\mathrm{f}(x)$ is divided by $2 x+1$, the remainder is $-\frac{9}{8}$.
(a) Find the values of a and b.
(b) Factorize $\mathrm{f}(x)$.
(c) Peter claims that the equation $\mathrm{f}(x)=0$ has three distinct real roots. Do you agree?

Explain your answer.

