
2021-2022 S6 MOCK EXAM-MATH-CP 2

S6 Mock Examination

MATHEMATICS Compulsory Part PAPER 2

10th January, 2022 11:00 am – 12:15 pm (1 hour 15 minutes)

INSTRUCTIONS

- 1. Read carefully the instructions on the Answer Sheet. After the announcement of the start of the examination, you should insert the information required in the spaces provided.
- 2. When told to open this book, you should check that all the questions are there. Look for the words 'END OF PAPER' after the last question.
- 3. All questions carry equal marks.
- 4. **ANSWER ALL QUESTIONS**. You should use an HB pencil to mark all your answers on the Answer Sheet, so that wrong marks can be completely erased with a clean rubber. You must mark the answers clearly; otherwise you will lose marks if the answers cannot be captured.
- 5. You should mark only **ONE** answer for each question. If you mark more than one answer, you will receive **NO MARKS** for that question.
- 6. No marks will be deducted for wrong answers.

There are 30 questions in Section A and 15 questions in Section B.

The diagrams in this paper are not necessarily drawn to scale.

Choose the best answer for each question.

Section A

1.
$$(7a^9)^2 \cdot a^6 =$$

- A. $49a^{24}$.
- B. $49a^{87}$.
- C. $14a^{24}$.
- D. $14a^{87}$.

2. If
$$\frac{m+5n}{3m} = 3 + \frac{n}{m}$$
, then $m =$

- A. $\frac{n}{4}$
- B. $\frac{2n}{7}$
- C. $\frac{3n}{5}$
- D. $\frac{7n}{8}$

3.
$$ad-ae-bd+be+cd-ce=$$

- A. (a+b-c)(d+e).
- B. (a+b-c)(d-e).
- C. (a-b+c)(d+e).
- D. (a-b+c)(d-e).

4. Let *a* and *b* be constants. If
$$3x^2 + 36x + b = a(x+6)^2 - 96$$
, then $b = a(x+6)^2 - 96$

- A. -81.
- В. -63.
- C. 3.
- D. 12.

5. If
$$a < b$$
, which of the following must be true?

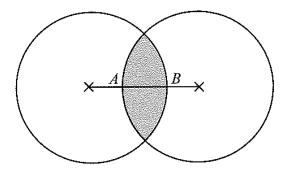
I.
$$a^2 > b^2$$

II.
$$\frac{1}{a^2} > \frac{1}{b^2}$$

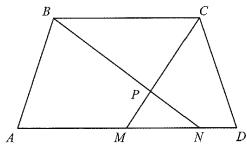
III.
$$-3a+1 > -3b+1$$

- A. I only
- B. III only
- C. I and II only
- D. II and III only

6.
$$\frac{\pi^2}{360}$$
 =

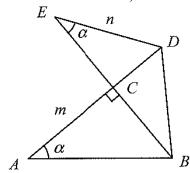

- A. 0.027 (correct to 3 significant figures).
- B. 0.02741 (correct to 4 significant figures).
- C. 0.02742 (correct to 5 decimal places).
- D. 0.027415 (correct to 6 decimal places).

- A. 12
- B. 13
- C. 25
- D. 37


- 8. Grace sells two phones for \$4 000 each. She sells the first one at a profit of 25%. After she has sold both phones, she has no gain and no loss. Grace sells the second phone at a loss of
 - A. 16.7%.
 - B. 20%.
 - C. 25%.
 - D. 33.3%.
- 9. If f(x) is a polynomial divisible by x+3, which of the following must be a factor of f(2x-6)?
 - A. 2*x*
 - B. x + 3
 - C. x-3
 - D. 2x-3
- 10. If the axis of symmetry and one of the x-intercepts of the quadratic graph of $y = x^2 + ax + b$ are x = -2 and 1 respectively, where a and b are constant, then
 - A. a = 4, b = -5.
 - B. a = -3, b = -4.
 - C. a = -4, b = -3.
 - D. a = -5, b = 4.
- 11. The solution of $\frac{3}{2} \frac{2x+1}{4} \ge \frac{4-3x}{8}$ or $-\frac{6-4x}{3} < 2$ is
 - A. $x \le 6$.
 - B. $x \le 10$.
 - C. x < 3
 - D. all real numbers.

- 12. If *m* and *n* are positive numbers such that $\frac{5m+6n}{9m-5n} = 6$, then \sqrt{m} : \sqrt{n} =
 - A. 6:7.
 - B. 7:6.
 - C. 36:49.
 - D. 49:36.
- **13.** Let a_n be the *n*th term of a sequence. If $a_1 = 1$ and $a_{n+1} = (2n+1)a_n$ for any positive integer *n*, then $a_7 =$
 - A. 13.
 - B. 15.
 - C. 135 135.
 - D. 2 027 025.
- **14.** It is given that *a* varies directly as the square root of *b* and inversely as the square of *c*. Which of the following is a/are constant(s)?
 - I. $\frac{ac^2}{\sqrt{b}}$
 - II. $\frac{ac^2}{b}$
 - III. $\frac{a^2c^4}{b}$
 - A. I only
 - B. II only
 - C. I and III only
 - D. I, II and III
- **15.** $[1 + \sin \theta \sin^2(270^\circ \theta)][1 + \sin(180^\circ + \theta)] =$
 - A. $\sin^3 \theta$.
 - B. $\sin\theta\cos^2\theta$.
 - C. $1+\sin^3\theta$.
 - D. $1+\sin\theta\cos^2\theta$.

16. In the figure, the diameters of the two circles are both 6 cm. The line joining the two centres cuts the circles at A and B. If AB = 2 cm, find the area of the shaded region correct to 2 decimal places.



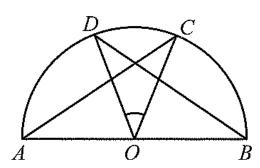
- A. 2.57 cm^2
- B. 3.10 cm^2
- C. 5.14 cm^2
- D. 6.19 cm^2
- 17. In the figure, ABCD is a trapezium with AD // BC. Let M and N be points on AD such that AM : MN : ND = 3 : 2 : 1. BN and CM intersect at point P. If the area of the quadrilateral ABPM and area of the quadrilateral CDNP are 39 m² and 21 m² respectively, find the area of the trapezium ABCD.

- A. 79.5 m^2
- B. 86.7 m^2
- C. 90 m^2
- D. 103.5 m^2

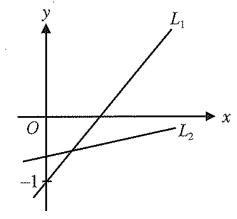
- **18.** The length and the width of a piece of paper are measured as 25 cm and 19 cm respectively correct to the nearest cm. The paper is then cut into *n* pieces of square with side measured as 2 cm correct to the nearest 0.1 cm. Find the greatest possible value of *n*.
 - A. 108
 - B. 117
 - C. 118
 - D. 130
- 19. In the figure, ACD and BCE are straight lines and $\angle ACB = 90^{\circ}$. If AC = m, DE = n and $\angle BAC = \angle BED = \alpha$, express $\tan \angle CBD$ in terms of m, n and α .

- A. $\frac{m}{n\sin\alpha\tan\alpha}$
- B. $\frac{n\sin\alpha\tan\alpha}{m}$
- C. $\frac{m}{n\cos\alpha}$
- D. $\frac{n\cos\alpha}{m}$
- **20.** If P is a moving point in the rectangular coordinate plane such that the distance between P and the point (-5, -3) is equal to the distance between P and the line x-3y+25=0, then the locus of P is a
 - A. parabola.
 - B. circle.
 - C. pair of straight lines.
 - D. straight line.

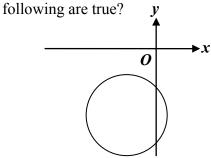
21. Which of the following figures has both rotational and reflectional symmetry?



22. Let *a*, *b*, *c* and *d*, be the exterior angles of a quadrilateral *ABCD* at the vertices *A*, *B*,


C and D respectively. If a:b:c:d=1:2:3:3, find $\angle ABC$.

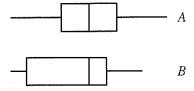
- A. 80°
- B. 100°
- C. 120°
- D. 150°
- **23.** In the figure, O is the centre of the semi-circle ABCD. If $\angle CAO = 34^{\circ}$ and AC = BD, then $\angle COD =$



- A. 33°.
- B. 38°.
- C. 44°.
- D. 49°.

24. In the figure, the equations of the straight lines L_1 and L_2 are x-ay-b=0 and x-my-n=0 respectively. Which of the following must be true?

- I. $a \le m$
- II. b < n
- III. a = b
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- **25.** In the figure, the equation of the circle is $x^2 + y^2 Ax + By + C = 0$. Which of the


- I. A < 0
- II. B > 0
- III. $C > \frac{A^2}{4}$
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

- **26.** If the point (-2, -7) is translated downwards by 3 units and then rotated anti-clockwise about the origin *O* through 270°, then the coordinates of its image are
 - A. (-10, 2).
 - B. (-7, 5).
 - C. (7, -5).
 - D. (10, -2).
- 27. A box contains 9 balls numbered 1, 2, 3, 4, 5, 6, 7, 8 and 9 respectively. Two balls are randomly drawn at the same time. Find the probability that the two numbers drawn are consecutive odd numbers.
 - A. $\frac{1}{3}$
 - B. $\frac{2}{9}$
 - C. $\frac{1}{9}$
 - D. $\frac{1}{18}$
- **28.** The pie chart below shows the distribution of the amounts of money donated by the students in class 1A in a fund raising event. Find the inter-quartile range of the amounts of the money donated.

- A. \$10
- B. \$15
- C. \$20
- D. \$25

29. The box-and-whisker diagrams below show the distributions of two data sets *A* and *B*. Which of the following must be true?

- I. Mean of A = Mean of B
- II. Range of A >Range of B
- III. Inter-quartile range of A <Inter-quartile range of B
- A. I only
- B. II only
- C. I and III only
- D. II and III only
- **30.** The stem-and leaf diagram below shows the distribution of the scores of a group of students in a Mathematics test.

Stem (tens)						
1	2	3	5 9	7		
2	4	8				
3	a	4	9	9		
4	1	b				

The mode of the scores is 39 marks. Let m, q and r be the median, the inter-quartile range and the range of the distribution respectively. Which of the following statements about m, q and r are true?

I.
$$q = 23$$

II.
$$29 < m < 31$$

III.
$$r > 29$$

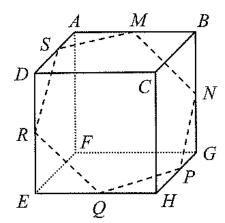
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

Section B

- **31.** The H.C.F and the L.C.M. of the two expressions $(x+1)^4(x-2)^4(x-3)$ and f(x) are $(x+1)^3(x-2)^4$ and g(x), where f(x) and g(x) are polynomials of x. Which of the following is true?
 - A. f(x) = (x-2)g(x)
 - B. $f(x) = (x^2 2x 3)g(x)$
 - C. g(x) = (x-2)f(x)
 - D. $g(x) = (x^2 2x 3)f(x)$
- **32.** B04E0012₁₆ =
 - A. $11 \times 16^7 + 4 \times 16^5 + 14 \times 16^4 + 18$.
 - B. $11\times16^8 + 4\times16^6 + 14\times16^5 + 288$.
 - C. $12 \times 16^7 + 4 \times 16^5 + 15 \times 16^4 + 18$.
 - D. $12 \times 16^8 + 4 \times 16^6 + 15 \times 16^5 + 288$.
- **33.** If $\log_a b = \log_b a$, then
 - A. a = b.
 - B. a = b or a = -b.
 - C. a = b or $a = \frac{1}{b}$.
 - D. a = b or $a = -\frac{1}{b}$.
- **34.** For $0^{\circ} < \theta < 180^{\circ}$, solve $3(1+\sin\theta\cos\theta) = 10\sin^2\theta$ correct to 3 significant figures.
 - A. 42.1°
 - B. 155°
 - C. -25.4° or 42.1°
 - D. 42.1° or 155°

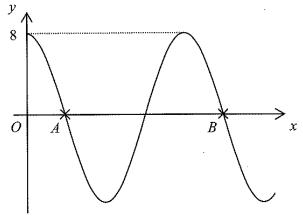
- 35. If $2^{4x} 4^{x+3} + 63 = 0$, find x correct to 3 significant figures.
 - A. 0 or 0.335
 - B. 0 or 2.99
 - C. 1 or 63
 - D. 63
- **36.** If α is a real number, then the real part of $2i \alpha$.

$$\frac{2i-\alpha}{3i-1}$$
 is

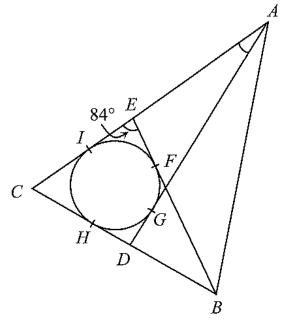

- A. $\frac{6+\alpha}{10}$.
- B. $\frac{6-\alpha}{8}$
- C. $\frac{\alpha}{10}$.
- D. α.
- **37.** Consider the following system of inequalities:

$$\begin{cases} y \ge 1 \\ 2x + y \ge 5 \\ 4x + y \le 41 \\ 2y - x \le 10 \end{cases}$$

Let G be the region which represents the solution of the above system of inequalities. If (x, y) is a point lying in G, find the maximum value of 75-4x-3y.


- A. 64
- B. 60
- C. 54
- D. 16

38. In the figure, ABCDEFGH is a cube. M, N, P, Q, R and S are mid-points of AB, BG, GH, HE, ED and DA respectively. If θ is the angle between plane MNPQRS and the plane ABGF, find $\cos \theta$.


- $A. \quad \frac{\sqrt{30}}{10}$
- B. $\frac{\sqrt{3}}{3}$
- $C. \quad \frac{\sqrt{10}}{5}$
- D. $\frac{\sqrt{6}}{3}$
- **39.** a, b, 9, c form an arithmetic sequence and a, b, c form a geometric sequence where a, b and c are all distinct real numbers. Find the value of a+b+c.
 - A. 15
 - B. 18
 - C. 21
 - D. 30
- **40.** If a regular tetrahedron of side a cm, a cube of side b cm and a sphere of radius c cm have the same volume, find $a^3:b^3:c^3$.
 - A. $24\sqrt{2}\pi:4\pi:3$
 - B. $8\sqrt{2}\pi:4\pi:3$
 - C. $6\sqrt{2}\pi : \pi : 6$
 - D. $2\sqrt{2}\pi : \pi : 6$

41. The figure shows the graph of $y = m\cos(75x^{\circ}) - 1$, where *m* is a constant. *A* and *B* are the points of intersection of the graph with the *x*-axis. Let *P* be a point on the graph. Find the maximum area of $\triangle ABP$.

- A. 19.2
- B. 24
- C. 38.4
- D. 48
- **42.** The equation of the circle C_1 is $x^2 + y^2 + 2x 4\sqrt{3}y + 9 = 0$. C_2 is a circle with centre $(4, -3\sqrt{3})$. If C_1 and C_2 touches each other at A, which of the following is a possible coordinates of A?
 - A. $(0, \sqrt{3})$
 - B. $(3, 2\sqrt{3})$
 - C. $(0, \sqrt{3})$ or $(-2, 3\sqrt{3})$
 - D. $(3, 2\sqrt{3})$ or $(-26, 27\sqrt{3})$

43. In the figure, BE, AD, BC and AC are the tangents to the circle at F, G, H and I respectively. It is given that BE is the angle bisector of $\angle ABC$ and AE = BE. If $\angle BEC = 84^{\circ}$ and FG : GH = 1:2, find $\angle CAD$.

- A. 15°
- B. 21°
- C. 36°
- D. 38°

- 44. In a study, 12 subjects are used to compare 3 different diets such that each diet is followed by 4 subjects. In how many ways can the diets be assigned to the subjects?
 - A. 64
 - B. 1728
 - C. 34 650
 - D. 121 287 375
- **45.** A and B are two sets of numbers. The mean and the variance A are -16 and 12 respectively. B is formed by adding x to each number of A and then multiplying each resulting number by y, where $y \ne 0$. The mean and the variance of B are 10x and -6xy respectively. Find the values of x and y.
 - A. x = -4 and y = -2
 - B. x = -4 and y = 2
 - C. x = 4 and y = -2
 - D. x = 4 and y = 2

END OF PAPER